

DRAINAGE REPORT

ALLEN & MAJOR ASSOCIATES, INC.

200-400 Quannapowitt Parkway Wakefield, MA

APPLICANT:

CCF Quannapowitt Property Company, LLC 185 Dartmouth Street Boston, MA 02116 PREPARED BY:

Allen & Major Associates, Inc. 100 Commerce Way, Suite 5 Woburn, Massachusetts 01801

DRAINAGE REPORT

200-400 Quannapowitt Parkway Wakefield, MA

APPLICANT:

CCF Quannapowitt Property Company, LLC 185 Dartmouth Street Boston, MA 02116

PREPARED BY:

Allen & Major Associates, Inc. 100 Commerce Way, Suite 5 Woburn, Massachusetts 01801

ISSUED:

March 16, 2021

REVISED:

August 3, 2021

A&M PROJECT NO.:

1623-11

TABLE OF CONTENTS

SECTION 1.0 - DRAINAGE REPORT	5
Introduction	6
Site Categorization for Stormwater Regulations	6
Site Location and Access	6
Existing Site Conditions	7
Existing Soil Conditions	7
FEMA Floodplain/Environmental Due Diligence	8
Environmentally Sensitive Zones	8
Drainage Analysis Methodology	8
Proposed Conditions – Peak Rate of Runoff	9
MASSDEP Stormwater Performance Standards	9
MASSDEP Stormwater Checklist	15
SECTION 2.0 - OPERATION & MAINTENANCE PLAN	23
Introduction	24
Notification Procedures for Change of Responsibility for O&M	24
Contact Information	25
Demolition & Construction Maintenance Plan	25
Long-Term Pollution Prevention Plan	26
Long-Term Maintenance Plan – Facilities Description	32
Inspection and Maintenance Frequency and Corrective Measures	33
Supplemental Information	33
SECTION 3.0 - EXISTING DRAINAGE ANALYSIS	50
Existing HydroCAD	51
SECTION 4.0 - PROPOSED DRAINAGE ANALYSIS	
Proposed HydroCAD	111
SECTION 5.0 - APPENDIX	190
MassDEP Calculations	191
Nutrient Loading & Reduction Calculations	194
TSS Removal Calculation	
SC-310 Chambers & Isolator Row	198
Rainfall Data	203

SEC	CTION 6.0 – WATERSHED PLANS	•••••
	FEMA FIRMetteH&A Test Pit Logs	. 209
	Soils Map	. 206
	Manning's Number Tables	204

SECTION 1.0 - DRAINAGE REPORT

Introduction

The purpose of this drainage report is to provide an overview of the proposed stormwater management system for the proposed development of 200-400 Quannapowitt Parkway, Wakefield, MA, (the site). The report will show by means of narrative, calculations and exhibits that there is no increase in the peak rate of runoff from the Site at all of the study points for each of the required (2-, 10- and 100-year) design storm events.

The proposed mixed-use redevelopment includes razing the existing building, and constructing three detached multi-story buildings with approximately 485 multifamily units and retail space. Other improvements to the site include renovation and reconstruction of all surface parking, landscaping, and underground utilities servicing the redevelopment. The stormwater management system (SMS) will be enhanced to maximize treatment and infiltration of stormwater on site.

The SMS incorporates structural and non-structural Best Management Practices (BMPs) to provide stormwater quality treatment and conveyance. The SMS includes deep-sump hooded catch basins, drain manholes, underground piping, underground infiltration chambers, bioretention cells, surface infiltration basins vegetated filter strip with stone diaphragm, roof drains, and an Operation & Maintenance Plan.

Site Categorization for Stormwater Regulations

According to the Massachusetts Stormwater Handbook the proposed site improvements at 200 Quannapowitt Parkway are considered "redevelopment" due to the reduction in impervious area. Under proposed conditions, the project will increase the amount of green (pervious) surfaces by approximately 41,000 s.f. (0.95 acres). A "redevelopment" project is required to meet the following Stormwater Management Standards only to the maximum extent practicable: Standard 2, Standard 3, and the pretreatment and structural best management practice requirements of Standards 4, 5, and 6. Existing stormwater discharges shall comply with Standard 1 only to the maximum extent practicable. A redevelopment project shall also comply with all other requirements of the Stormwater Management Standards and improve existing conditions. See the discussion of Stormwater Management Standards that follows.

There is work proposed within MA DEP jurisdictional areas. Therefore, approval under the Massachusetts Wetlands Protection Act is required and a Notice of Intent (NOI) filing has been prepared and submitted as part of this project.

Site Location and Access

The site is located entirely within the Town of Wakefield, Massachusetts and is situated between Interstate-95 to the west and Lake Quannapowitt to the east. Access to

Quannapowitt Parkway is provided off Lowell Street to the north and North Ave to the south.

Existing Site Conditions

The majority of the existing building is currently vacant and previously used as office space with a small percentage dedicated to a data center. The Site is generally flat, varying 0-5 feet in elevation, with a low point around the perimeter of the property and a high point at the center in the general location of the existing building. The Site is surrounded by wetlands as shown on the accompanying plans. These wetlands are fed primarily by surface runoff from the existing roof and parking lot. The majority of this runoff flows unmitigated with no treatment prior to discharge at the resource areas. These wetlands are also connected to Lake Quannapowitt by two underground culverts located at the southern and eastern corners of the property.

All runoff from the Site was analyzed at three study points. Study Point #1 is a summation of all runoff towards the existing culvert to the south connecting to the lake. Study Point #2 is a summation of all site runoff from the site into the lake. Study Point #3 is a summation of all runoff towards the existing culvert to the east connecting to the lake. All Site runoff eventually discharges to Lake Quannapowitt through the two culverts described above, direct entry from roof leaders, or overland flow from the grassed area bordering the lake. Copies of the Watershed plans (Existing and Proposed), providing the boundaries and contributing areas are provided in the back pocket of this report.

Existing Soil Conditions

The on-site soils were identified using the USDA Natural Resources Conservation Services (NRCS) Soil Survey for Middlesex County. The site is primarily Soil Type 656 – Udorthents-Urban Land Complex. Urban Land consists of areas where the soil has been altered or obscured by buildings or paved areas. These structures cover 75 percent or more of the surface area. A copy of the soil mapping is included in the Appendix of this report.

Haley & Aldrich (H&A) performed some preliminary subsurface explorations on the property and described their findings in a Memorandum titled "Due Diligence Geotechnical Investigation". It's estimated that a 2-6' surficial layer of fill exists across the site. The fill consists primarily of reworked natural granular soils placed during previous site development. The memorandum went on to describe the groundwater conditions as follows:

"Groundwater observation wells were not installed as part of this investigation. Previous explorations on adjacent parcels, as well as water levels in the adjacent Lake Quannapowitt, suggest that groundwater is likely present about 3 to 5 feet below

existing site grades. This is consistent with where groundwater levels were interpreted in the recent CPT explorations. The Lake is dam controlled and reported to be maintained at approximately El. 79."

H&A went on to perform additional sub-surface investigations by digging eight (8) test pits throughout areas designated for stormwater management. These test pits were consistent with earlier findings showing fill across the site describing the soils as sandy/silty loam. Mottling was not apparent in any of the pits however water was observed between 2.7' and 7' below grade after an extended period of time. It is important to note that two-days prior to the test pit excavations, the surrounding area experienced above average rainfall with depths up to 1-inch recorded in the Boston area.

The Town Engineer witnessed several of the eight (8) test pits and has recommended TP-6 be used to establish the groundwater elevation 81.0' across the site for design purposes. The test pit logs prepared by H&A are provided in the appendix of this report.

FEMA Floodplain/Environmental Due Diligence

The Site borders and has a hydraulic connection to FEMA *Zone "AE"* elevation 83.0. *Zone "AE" areas* are areas of 1% annual chance (or 100-year) flood area. The official Flood Insurance Rate Map (FIRM) for the site is dated June 4, 2010 and shown on FEMA panel 25017C0314E. A copy of the FEMA FIRM is included in the appendix of this report.

Environmentally Sensitive Zones

The Commonwealth of Massachusetts asserts control over numerous protected and regulated areas including: Areas of Critical Environmental Concern (ACEC); Outstanding Resource Waters (ORWs); Priority and Protected Habitat for rare and endangered species, and areas protected under the Wetlands Protection Act. The subject property is not located within any of these regulated areas.

Drainage Analysis Methodology

A peak rate of runoff will be determined using techniques and data found in the following:

- <u>Urban Hydrology for Small Watersheds</u> Technical Release 55 by the United States Department of Agriculture Soils Conservation Service, June 1986. Runoff curve numbers and 24-hour precipitation values were obtained from this reference.
- 2. <u>HydroCAD © Stormwater Modeling System</u> by HydroCAD Software Solutions LLC, version 10.00-24. The HydroCAD program was used to generate the runoff hydrographs for the watershed areas, to determine discharge/ stage/storage characteristics for the stormwater BMPs, to perform drainage routing and to

combine the results of the runoff hydrographs. HydroCAD uses the TR-20 methodology of the SCS Unit Hydrograph procedure (SCS-UH).

Proposed Conditions – Peak Rate of Runoff

The stormwater runoff analysis of the existing and proposed conditions includes an estimate of the peak rate of runoff from various rainfall events. Peak runoff rates were developed using TR55 Urban Hydrology for Small Watersheds, developed by the U.S. Department of Commerce, Engineering Division and the HydroCAD computer program. Further, the analysis has been prepared in accordance with the MassDEP and the Town of Wakefield requirements and standard engineering practices. The peak rate of runoff has been estimated for each watershed during the 2, 10, and 100-year storm events.

The stormwater runoff model demonstrates that the overall peak rates of runoff into Lake Quannapowitt will not be increased under proposed conditions during all storm events. The following table provides a summary of the estimated peak rates of runoff for each of the design storm events. The HydroCAD worksheets are included in Section 3 and 4 of this report.

STUDY POINT #1 (Lake Quannapowitt)				
	2-Year	10-Year	100-Year	
Existing Flow (CFS)	10.28	20.29	33.45	
Proposed Flow (CFS) 2.13		10.02	24.25	
Decrease (CFS)	8.15 (79%)	10.27 (51%)	9.20 (28%)	
Existing Volume (CF)	88,974	173,080	307,440	
Proposed Volume (CF)	47,968	128,688	260,071	
Decrease (CF)	41,006 (46%)	44,392 (26%)	47,369 (15%)	

MASSDEP Stormwater Performance Standards

The MA DEP Stormwater Management Policy was developed to improve water quality by implementing performance standards for stormwater management. The intent is to implement the stormwater management standards through the review of Notice of Intent filings by the issuing authority (Conservation Commission or DEP). The following section outlines how the proposed Stormwater Management System meets the standards set forth by the Policy.

BMP's implemented in the design include -

- Deep Sump Catch Basins
- Vegetated Filter Strip & Stone Diaphragm
- Subsurface Structures
- Bioretention Areas
- Surface Infiltration Basin
- Wet Basin

• Specific Maintenance Schedule

Stormwater Best Management Practices (BMP's) have been incorporated into the design of the project to mitigate the anticipated pollutant loading. An Operations and Maintenance Plan has been developed for the project, which addresses the long-term maintenance requirements of the proposed system.

Temporary erosion and sedimentation controls will be incorporated into the construction phase of the project. These temporary controls may include straw bale and/or silt fence barriers, inlet sediment traps, slope stabilization, and stabilized construction entrances.

The Massachusetts Department of Environmental Protection has established ten (10) Stormwater Management Standards. A project that meets or exceeds the standards is presumed to satisfy the regulatory requirements regarding stormwater management. The Standards are enumerated below as well as descriptions and supporting calculations as to how the Project will comply with the Standards:

- 1. No new stormwater conveyances (e.g. outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.
 - The proposed development will not introduce any new outfalls with direct discharge to a wetland area or waters of the Commonwealth of Massachusetts. All discharges will be treated for water quality and the rate will not be increased over existing conditions.
- Stormwater management systems shall be designed so that post-development peak discharge rates do not exceed pre-development peak discharge rates. This Standard may be waived for discharges to land subject to coastal storm flowage as defined in 310 CMR 10.04.
 - The proposed development has been designed so that the post-development peak discharge rates do not exceed the predevelopment peak discharge rates. A summary of the existing and proposed discharge rates is included within this document.
- 3. Loss of annual recharge to groundwater shall be eliminated or minimized through the use of infiltration measures including environmentally sensitive site design, low impact development techniques, stormwater best management practices, and good operation and maintenance. At a minimum, the annual recharge from the post-development site shall approximate the annual recharge from pre-development conditions based on soil type. This Standard is met when the stormwater

management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook.

The proposed site improvements are classified as a "redevelopment" under the MA DEP Stormwater Management Standards based upon a reduction in impervious area. Consequently, compliance with Standard #3 is required only to the maximum extent practicable. This reduction is achieved with the installation of landscape areas.

Existing impervious area = $9.77 \pm acres$ Proposed impervious area = $8.82 \pm acres$ Change in impervious area = $-0.95 \pm acres$

See the appendix located in section 6 of this report for stormwater recharge calculations.

- 4. Stormwater management systems shall be designed to remove 80% of the average annual post-construction load of Total Suspended Solids (TSS). This standard is met when:
 - Suitable practices for source control and pollution prevention are identified in a long-term pollution prevention plan, and thereafter are implemented and maintained:
 - Structural stormwater best management practices are sized to capture the required water quality volume determined in accordance with the Massachusetts Stormwater Handbook; and
 - Pretreatment is provided in accordance with the Massachusetts Stormwater Handbook.

Standard #4 is met when structural stormwater best management practices are sized to capture and treat the required water quality volume and pretreatment is provided in accordance with the Massachusetts Stormwater Handbook. Standard #4 also requires that suitable source control measures are identified in the Longterm Pollution Prevention Plan. The water quality volume for the site redevelopment is captured and treated using the BMPs listed above.

The implemented BMPs have been designed to treat the contributing water quality volume. These water quality calculations can be seen within the appendix of this report.

The proposed stormwater management system has been designed to remove 80% of the average annual post-construction load for each treatment train. The TSS removal calculations can be seen within the appendix of this report.

5. For land uses with higher potential pollutant loads, source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable. If through source control and/or pollution prevention all land uses with higher potential pollutant loads cannot be completely protected from exposure to rain, snow, snow melt, and stormwater runoff, the proponent shall use the specific structural stormwater BMPs determined by the Department to be suitable for such uses as provided in the Massachusetts Stormwater Handbook. Stormwater discharges from land uses with higher potential pollutant loads shall also comply with the requirements of the Massachusetts Clean Waters Act, M.G.L. c. 21, §§ 26-53 and the regulations promulgated thereunder at 314 CMR 3.00, 314 CMR 4.00 and 314 CMR 5.00.

The proposed redevelopment is considered a source of higher potential pollutant loads due to 1,000 or more expected vehicle trips per day. The SMS will be designed to treat 1" water quality volume.

6. Stormwater discharges within the Zone II or Interim Wellhead Protection Area of a public water supply, and stormwater discharges near or to any other critical area, require the use of the specific source control and pollution prevention measures and the specific structural stormwater best management practices determined by the Department to be suitable for managing discharges to such areas, as provided in the Massachusetts Stormwater Handbook. A discharge is near a critical area if there is a strong likelihood of a significant impact occurring to said area, taking into account site-specific factors. Stormwater discharges to Outstanding Resource Waters and Special Resource Waters shall be removed and set back from the receiving water or wetland and receive the highest and best practical method of treatment. A "storm water discharge" as defined in 314 CMR 3.04(2)(a)1 or (b) to an Outstanding Resource Water or Special Resource Water shall comply with 314 CMR 3.00 and 314 CMR 4.00. Stormwater discharges to a Zone I or Zone A are prohibited unless essential to the operation of a public water supply.

The project site does not discharge stormwater within a Zone II or Interim Wellhead Protection Area or near a critical area. Critical Areas are Outstanding Resource Waters as designated in 314 CMR 4.00, Special Resource Waters as

designated in 314 CMR 4.00, recharge areas for public water supplies as defined in 310 CMR 22.02, bathing beaches as defined in 105 CMR 445.000, cold-water fisheries as defined in 314 CMR 9.02 and 310 CMR 10.04, and shellfish growing areas as defined in 314 CMR 9.02 and 310 CMR 10.04.

7. A redevelopment project is required to meet the following Stormwater Management Standards only to the maximum extent practicable: Standard 2, Standard 3, and the pretreatment and structural best management practice requirements of Standards 4, 5, and 6. Existing stormwater discharges shall comply with Standard 1 only to the maximum extent practicable. A redevelopment project shall also comply with all other requirements of the Stormwater Management Standards and improve existing conditions.

The proposed project is considered a redevelopment under the MA DEP Stormwater Management Standards as there is a decrease in the amount of total impervious area.

8. A plan to control construction-related impacts including erosion, sedimentation and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan) shall be developed and implemented.

A plan to control construction-related impacts, including erosion, sedimentation and other pollutant sources during construction has been developed. A detailed Erosion and Sedimentation Control Plan is included in the Permit Drawings. The proponent will prepare and submit a Stormwater Pollution Prevention Plan (SWPPP) prior to commencement of construction activities that will result in the disturbance of one acre of land or more.

9. A long-term operation and maintenance plan shall be developed and implemented to ensure that stormwater management systems function as designed.

A Long-Term Operation & Maintenance (O&M) Plan has been developed for the proposed stormwater management system and is included within this document. See Section 2.0 of this report.

10. All illicit discharges to the stormwater management system are prohibited.

There are no expected illicit discharges to the stormwater management system. The applicant will submit the Illicit Discharge Compliance Statement prior to the discharge of stormwater runoff to the post-construction stormwater best management practices and prior to the issuance of a Certificate of Compliance.

See the next page for the MassDEP Stormwater Checklist.

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals. This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

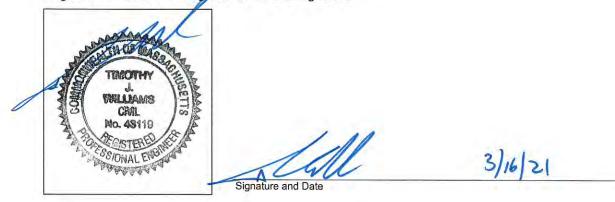
¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.


Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Checklist

	exploration ject Type: Is the application for new development, redevelopment, or a mix of new and evelopment?
	New development
\boxtimes	Redevelopment
	Mix of New Development and Redevelopment

Checklist for Stormwater Report

Checklist (continued)

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

\boxtimes	No disturbance to any Wetland Resource Areas
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
\boxtimes	Reduced Impervious Area (Redevelopment Only)
\boxtimes	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	☐ Credit 1
	☐ Credit 2
	☐ Credit 3
\boxtimes	Use of "country drainage" versus curb and gutter conveyance and pipe
\boxtimes	Bioretention Cells (includes Rain Gardens)
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
	Water Quality Swale
	Grass Channel
	Green Roof
	Other (describe):
Sta	ndard 1: No New Untreated Discharges
\boxtimes	No new untreated discharges
\boxtimes	Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
\boxtimes	Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Checklist for Stormwater Report

Cł	necklist (continued)
Sta	ndard 2: Peak Rate Attenuation
	Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
	Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.
	Calculations provided to show that post-development peak discharge rates do not exceed pre- development rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24- hour storm.
Sta	ndard 3: Recharge
\boxtimes	Soil Analysis provided.
\boxtimes	Required Recharge Volume calculation provided.
	Required Recharge volume reduced through use of the LID site Design Credits.
\boxtimes	Sizing the infiltration, BMPs is based on the following method: Check the method used.
	Runoff from all impervious areas at the site discharging to the infiltration BMP.
	Runoff from all impervious areas at the site is <i>not</i> discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.
\boxtimes	Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
	Recharge BMPs have been sized to infiltrate the Required Recharge Volume <i>only</i> to the maximum extent practicable for the following reason:
	☐ Site is comprised solely of C and D soils and/or bedrock at the land surface
	☐ M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
	☐ Solid Waste Landfill pursuant to 310 CMR 19.000
	☐ Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
\boxtimes	Calculations showing that the infiltration BMPs will drain in 72 hours are provided.

Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Cł	necklist (continued)
Sta	andard 3: Recharge (continued)
	The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10-year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.
	Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.
Sta	andard 4: Water Quality
	e Long-Term Pollution Prevention Plan typically includes the following: Good housekeeping practices; Provisions for storing materials and waste products inside or under cover; Vehicle washing controls; Requirements for routine inspections and maintenance of stormwater BMPs; Spill prevention and response plans; Provisions for maintenance of lawns, gardens, and other landscaped areas; Requirements for storage and use of fertilizers, herbicides, and pesticides; Pet waste management provisions; Provisions for operation and management of septic systems; Provisions for solid waste management; Snow disposal and plowing plans relative to Wetland Resource Areas; Winter Road Salt and/or Sand Use and Storage restrictions; Street sweeping schedules; Provisions for prevention of illicit discharges to the stormwater management system; Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL; Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan; List of Emergency contacts for implementing Long-Term Pollution Prevention Plan. A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent. Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge: is within the Zone II or Interim Wellhead Protection Area
	is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
	involves runoff from land uses with higher potential pollutant loads

☐ The Required Water Quality Volume is reduced through use of the LID site Design Credits.

applicable, the 44% TSS removal pretreatment requirement, are provided.

□ Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if

Checklist (continued)

Checklist for Stormwater Report

Sta	ndard 4: Water Quality (continued)
\boxtimes	The BMP is sized (and calculations provided) based on:
	☐ The ½" or 1" Water Quality Volume or
	☐ The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
	The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
	A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.
Sta	ndard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)
	The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted <i>prior to</i> the discharge of stormwater to the post-construction stormwater BMPs.
	The NPDES Multi-Sector General Permit does <i>not</i> cover the land use.
	LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
	All exposure has been eliminated.
	All exposure has <i>not</i> been eliminated and all BMPs selected are on MassDEP LUHPPL list.
\boxtimes	The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.
Sta	ndard 6: Critical Areas
	The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
	Critical areas and BMPs are identified in the Stormwater Report.

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

| The project is subject to the Stormwater Management Standards only to the maximum Extent

\boxtimes	Practicable as a:
	☐ Limited Project
	 Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area. Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
	☐ Bike Path and/or Foot Path
	□ Redevelopment Project
	Redevelopment portion of mix of new and redevelopment.
	Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report. The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule:
- Maintenance Schedule;
- Inspection and Maintenance Log Form.
- A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Checklist for Stormwater Report

Checklist (continued)

	andard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control antinued)
	The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has <i>not</i> been included in the Stormwater Report but will be submitted <i>before</i> land disturbance begins.
	The project is <i>not</i> covered by a NPDES Construction General Permit.
	The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the
\boxtimes	Stormwater Report. The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.
Sta	andard 9: Operation and Maintenance Plan
\boxtimes	The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
	Name of the stormwater management system owners;
	□ Party responsible for operation and maintenance;
	Schedule for implementation of routine and non-routine maintenance tasks;
	☑ Plan showing the location of all stormwater BMPs maintenance access areas;
	□ Description and delineation of public safety features;
	□ Estimated operation and maintenance budget; and
	□ Operation and Maintenance Log Form.
	The responsible party is not the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
	A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
	A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.
Sta	andard 10: Prohibition of Illicit Discharges
\boxtimes	The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
	An Illicit Discharge Compliance Statement is attached;
	NO Illicit Discharge Compliance Statement is attached but will be submitted <i>prior to</i> the discharge of any stormwater to post-construction BMPs.

SECTION 2.0 OPERATION &
MAINTENANCE PLAN

Introduction

In accordance with the standards set forth by the Stormwater Management Policy issued by the Massachusetts Department of Environmental Protection (MassDEP), Allen & Major Associates, Inc. has prepared the following Operations & Maintenance (O&M) Plan for the existing development at 200 Quannapowitt Parkway, Wakefield, MA.

The plan is broken down into three major sections. The first section describes construction-related erosion and sedimentation controls (Demolition & Construction Maintenance Plan). The second section describes the long-term pollution prevention measures (Long Term Pollution Prevention Plan). The third section is a post-construction operation and maintenance plan designed to address the long-term maintenance needs of the stormwater management system (Long-Term Maintenance Plan – Facilities Description).

Notification Procedures for Change of Responsibility for O&M

The Stormwater Management System (SMS) for this project is owned by Cabot, Cabot & Forbes (owner). The owner shall be legally responsible for the long-term operation and maintenance of this SMS as outlined in this Operation and Maintenance Plan.

The owner shall submit an annual summary report and the completed Operation & Maintenance Schedule & Checklist to the Public Works Engineering Division and Conservation Commission (via email or print copy), highlighting inspection and maintenance activities including performances of BMPs. Should ownership of the SMS change, the owner will continue to be responsible until the succeeding owner shall notify the Commission that the succeeding owner has assumed such responsibility. Upon subsequent transfers, the responsibility shall continue to be that of transferring owner until the transferee owner notifies the Commission of its assumption of responsibility.

In the event the SMS will serve multiple lots/owners, such as the subdivision of the existing parcel or creation of lease areas, the owner(s) shall establish an association on other legally enforceable arrangements under which the association or a single party shall have legal responsibility for the operation and maintenance of the entire SMS. The legal instrument creating such responsibility shall be recorded with the Registry of Deeds and promptly following its recording, a copy thereof shall be furnished to the Commission.

Contact Information

Stormwater Management System Owner: CCF Quannapowitt Property Company,

LLC

185 Dartmouth Street Boston, MA 02116 Phone: 617-603-4000

Emergency Contact Information:

Allen & Major Associates, Inc. Phone: (781) 935-6889

(Site Civil Engineer)

Wakefield Department of Public Works Phone: 781-246-6301 Wakefield Conservation Commission Phone: 781-224-5015 Wakefield Fire Department Phone: 781-246-6435

(non-emergency line)

MassDEP Emergency Response Phone: (888) 304-1133 Clean Harbors Inc (24-Hour Line) Phone: (800) 645-8265

Demolition & Construction Maintenance Plan

1. Call Digsafe: 1-888-344-7233

- 2. Contact the Town of Wakefield at least three (3) days prior to start of demolition and/or construction activities.
- 3. Install Erosion Control measures as shown on the Plans prepared by A&M. The Town of Wakefield shall review the installation of straw bales and silt fencing prior to the start of any site demolition work. Install Construction fencing if determined to be necessary at the commencement of construction.
- 4. Install construction entrances, straw bales, and silt fence at the locations shown on the Erosion Control Plan prepared by A&M.
- 5. Site access shall be achieved only from the designated construction entrances.
- 6. Cut and clear trees in construction areas only (within the limit of work; see plans).
- Stockpiles of materials subject to erosion shall be stabilized with erosion control
 matting or temporary seeding whenever practicable, but in no case more than 14
 days after the construction activity in that portion of the site has temporarily or
 permanently ceased.
- 8. Install silt sacks and straw bales around each drain inlet prior to any demolition and or construction activities.

- 9. All erosion control measures shall be inspected weekly and after every rainfall event. Records of these inspections shall be kept on-site for review.
- 10. All erosion control measures shall be maintained, repaired, or replaced as required or at the direction of the owner's engineer or the Town of Wakefield.
- 11. Sediment accumulation up-gradient of the straw bales, silt fence, and stone check dams greater than 6" in depth shall be removed and disposed of in accordance with all applicable regulations.
- 12. If it appears that sediment is exiting the site, silt sacks shall be installed in all catch basins adjacent to the site. Sediment accumulation on all adjacent catch basin inlets shall be removed and the silt sack replaced if torn or damaged.
- 13. Install stone check dams on-site during construction as needed. Refer to the erosion control details. Temporary sediment basins combined with stone check damns shall be installed on-site during construction to control and collect runoff from upland areas of this site during demolition and construction activities.
- 14. The contractor shall comply with the Sedimentation and Erosion Control Notes as shown on the Site Development Plans and Specifications.
- 15. The stabilized construction entrances shall be inspected weekly and records of inspections kept. The entrances shall be maintained by adding additional clean, angular, durable stone to remove the soil from the construction vehicle's tires when exiting the site. If soil is still leaving the site via the construction vehicle tires, adjacent roadways shall be kept clean by street sweeping.
- 16. Dust pollution shall be controlled using on-site water trucks and/or an approved soil stabilization product.
- 17. During demolition and construction activities, Status Reports on compliance with this O&M Document shall be submitted weekly. The report shall document any deficiencies and corrective actions taken by the applicant.

Long-Term Pollution Prevention Plan

Standard #4 from the MassDEP Stormwater Management Handbook requires that a Long-Term Pollution Prevention Plan (LTPPP) be prepared and incorporated as part of the Operation and Maintenance Plan of the Stormwater Management System. The purpose of the LTPPP is to identify potential sources of pollution that may affect the quality of stormwater discharges, and to describe the implementation of practices to reduce the pollutants in stormwater discharges. The following items describe the source control and proper procedures of the LTPPP.

Housekeeping

The existing development has been designed to maintain a high level of water quality treatment for all stormwater discharge to the wetland areas. An Operation and Maintenance (O&M) plan has been prepared and is included in this section of the report. The owner (or its designee) is responsible for adherence to the O&M plan in a strict and complete manner.

• Storing of Materials & Water Products

The trash and waste program for the site includes exterior dumpsters. There is a trash contractor used to pick up the waste material in the dumpsters. The stormwater drainage system has water quality inlets designed to capture trash and debris.

• Vehicle Washing

Outdoor vehicle washing has the potential to result in high loads of nutrients, metals, and hydrocarbons during dry weather conditions, as the detergent-rich water used to wash the grime off the vehicle enters the stormwater drainage system. The existing development does not include any designated vehicle washing areas, nor is it expected that any vehicle washing will take place on-site.

• Spill Prevention & Response

Sources of potential spill hazards include vehicle fluids, liquid fuels, pesticides, paints, solvents, and liquid cleaning products. The majority of the spill hazards would likely occur within the buildings and would not enter the stormwater drainage system. However, there are spill hazards from vehicle fluids or liquid fuels located outside of the buildings. These exterior spill hazards have the potential to enter the stormwater drainage system and are to be addressed as follows:

- 1. Spill hazards of pesticides, paints, and solvents shall be remediated using the Manufacturers' recommended spill cleanup protocol.
- 2. Vehicle fluids and liquid fuel spill shall be remediated according to the local and state regulations governing fuel spills.
- 3. The owner shall have the following equipment and materials on hand to address a spill clean-up: brooms, dust pans, mops, rags, gloves, absorptive material, sand, sawdust, plastic and metal trash containers.
- 4. All spills shall be cleaned up immediately after discovery.

- 5. Spills of toxic or hazardous material shall be reported, regardless of size, to the Massachusetts Department of Environmental Protection at (888) 304-1333.
- 6. Should a spill occur, the pollution prevention plan will be adjusted to include measures to prevent another spill of a similar nature. A description of the spill, along with the causes and cleanup measures will be included in the updated pollution prevention plan.

Maintenance of Lawns, Gardens, and Other Landscaped Areas

It should be recognized that this is a general guideline towards achieving high quality and well-groomed landscaped areas. The grounds staff/landscape contractor must recognize the shortcomings of a general maintenance plan such as this, and modify and/or augment it based on weekly, monthly, and yearly observations. In order to assure the highest quality conditions, the staff must also recognize and appreciate the need to be aware of the constantly changing conditions of the landscaping and be able to respond to them on a proactive basis. No trees shall be planted over the drain lines or recharge area, and that only shallow rooted plants and shrubs will be allowed.

o Fertilizer

Maintenance practices should be aimed at reducing environmental, mechanical and pest stresses to promote healthy and vigorous growth. When necessary, pest outbreaks should be treated with the most sensitive control measure available. Synthetic chemical controls should be used only as a last resort to organic and biological control methods. Fertilizer, synthetic chemical controls and pest management applications (when necessary) shall be performed only by licensed applicators in accordance with the manufacturer's label instructions when environmental conditions are conducive to controlled product application.

Only slow-release organic fertilizers should be used in the planting and mulch areas to limit the amount of nutrients that could enter downstream resource areas. Fertilization of the planting and mulch areas will be performed within manufacturers labeling instructions and shall not exceed an NPK ration of 1:1:1 (i.e. Triple 10 fertilizer mix), considered a low nitrogen mixture. Fertilizers approved for the use under this O&M Plan are as follows:

Type: LESCO® 28-0-12 (Lawn Fertilizer)

MERIT® 0.2 Plus Turf Fertilizer MOMENTUM™ Force Weed & Feed

o Suggested Aeration Program

In-season aeration of lawn areas is good cultural practice, and is recommended whenever feasible. It should be accomplished with a solid thin tine aeration method to reduce disruption to the use of the area. The depth of solid tine aeration is similar to core type, but should be performed when the soil is somewhat drier for a greater overall effect.

Depending on the intensity of use, it can be expected that all landscaped lawn areas will need aeration to reduce compaction at least once per year. The first operation should occur in late May following the spring season. Methods of reducing compaction will vary based on the nature of the compaction. Compaction on newly established landscaped areas is generally limited to the top 2-3" and can be alleviated using hollow core or thin tine aeration methods.

The spring aeration should consist of two passes at opposite directions with 1/4" hollow core tines penetrating 3-5" into the soil profile. Aeration should occur when the soil is moist but not saturated. The soil cores should be shattered in place and dragged or swept back into the turf to control thatch. If desired the cores may also be removed and the area top-dressed with sand or sandy loam. If the area drains on average too slowly, the topdressing should contain a higher percentage of sand. If it is draining on average too quickly, the top dressing should contain a higher percentage of soil and organic matter.

<u>Landscape Maintenance Program Practices:</u>

Lawn

- 1. Mow a minimum of once a week in spring, to a height of 2" to 2 1/2" high. Mowing should be frequent enough so that no more than 1/3 of grass blade is removed at each mowing. The top growth supports the roots; the shorter the grass is cute, the less the roots will grow. Short cutting also dries out the soil and encourages weeds to germinate.
- 2. Mow approximately once every two weeks from July 1st to August 15th depending on lawn growth.
- 3. Mow on a ten-day cycle in fall, when growth is stimulated by cooler nights and increased moisture.
- 4. Do not remove grass clippings after mowing.
- 5. Keep mower blades sharp to prevent ragged cuts on grass leaves, which cause a brownish appearance and increase the chance for disease to enter a leaf.

Shrubs

- 1. Mulch not more than 3" depth with shredded pine or fir bark.
- 2. Hand prune annually, immediately after blooming, to remove 1/3 of the above-ground biomass (older stems). Stem removals are to occur within 6" of the ground to open up shrub and maintain two-year wood (the blooming wood).
- 3. Hand-prune evergreen shrubs only as needed to remove dead and damaged wood and to maintain the naturalistic form of the shrub. Never mechanically shear evergreen shrubs.

Trees

- 1. Provide aftercare of new tree plantings for the first three years.
- 2. Do not fertilize trees, it artificially stimulates them (unless tree health warrants).
- 3. Water once a week for the first year; twice a month for the second; once a month for the third year.
- 4. Prune trees on a four-year cycle.

Invasive Species

1. Inform the Conservation Commission Agent prior to the removal of invasive species proposed either through hand work or through chemical removal.

• Storage and Use of Herbicides and Pesticides

Integrated Pest Management is the combination of all methods (of pest control) which may prevent, reduce, suppress, eliminate, or repel an insect population. The main requirements necessary to support any pest population are food, shelter and water, and any upset of the balance of these will assist in controlling a pest population. Scientific pest management is the knowledgeable use of all pest control methods (sanitation, mechanical, chemical) to benefit mankind's health, welfare, comfort, property and food. A Pest Management Professional (PMP) should be retained who is licensed with the Commonwealth of Massachusetts Executive Office of Energy and Environmental Affairs, Department of Agricultural Resources.

The site manager will be provided with approved bulletin before entering into or renewing an agreement to apply pesticides for the control of indoor household or structural pests, refer to 333 CMR 13.08.

Before beginning each application, the applicator must post a Department approved notice on all of the entrances to the treated room or area. The applicator must leave such notices posted after the application. The notice will be posted at conspicuous point(s) of access to the area treated. The location and number of signs will be determined by the configuration of the area to be treated based on the applicator's best judgment. It is intended to give sufficient notice so that no one comes into an area being treated unaware that the applicator is working and pesticides are being applied. However, if the contracting entity does not want the signs posted, he/she may sign a Department approved waiver indicating this.

The applicator or employer will provide to any person upon their request the following information on previously conducted applications:

- 1. Name and phone number of pest control company;
- 2. Date and time of the application;
- 3. Name and license number of the applicator;
- 4. Target pests; and
- 5. Name and EPA Registration Number of pesticide products applied.

• Pet Waste Management

The owner's landscape crew (or designee) shall remove any obvious pet waste that has been left behind by pet owners within the development. The pet waste shall be disposed of in accordance with local and state regulations.

Operations and Management of Septic Systems
 There are no proposed septic systems within the limits of the project.

Management of Deicing Chemicals and Snow

Snow will be stockpiled on site until the accumulated snow becomes a hazard to the daily operations of the site. It will be the responsibility of the snow removal contractor to properly dispose of transported snow according to MassDEP, Bureau of Resource Protection – Snow Disposal Guideline #BRPG01-01, governing the proper disposal of snow. It will be the responsibility of the snow removal contractor to follow these guidelines and all applicable laws and regulations

The owner's maintenance staff (or its designee) will be responsible for the clearing of the sidewalk and building entrances. The owner may be required to use a de-icing agent such as potassium chloride to maintain a safe walking surface. If used, the de-icing agent for the walkways and building entrances will be kept within the storage rooms located within the building. If used, de-icing agents will not be stored outside. The owner's maintenance staff will limit the application of sand.

Long-Term Maintenance Plan – Facilities Description

A maintenance log will be kept (i.e. report) summarizing inspections, maintenance, and any corrective actions taken. The log will include the date on which each inspection or maintenance task was performed, a description of the inspection findings or maintenance completed, and the name of the inspector or maintenance personnel performing the task. If a maintenance task requires the clean-out of any sediments or debris, the location where the sediment and debris was disposed after removal will be indicated. The log will be made accessible to department staff and a copy provided to the department upon request.

The following is a description of the Stormwater Management System for the project site.

<u>Stormwater Collection System – On-Site:</u>

The stormwater collection system is a series of inlets located at low points within the limits of the paved area. All of the proposed on-site catch basins incorporate a deep sump and hooded outlet. The catch basins are connected by a closed gravity pipe network routed to an isolator row within the underground detention chambers.

Roof runoff discharges directly to the underground chambers, bioretention area, or surface infiltration basin. All remaining runoff along the perimeter of the site and within the parkway, sheet flows through vegetated filter strips equipped with a stone diaphragm before entering the constructed wet basins. The wet basins then discharge treated stormwater to the wetlands and/or drainage channel.

<u>Pretreatment BMPs</u>: Regular maintenance of these BMPs is especially critical because they typically receive the highest concentration of suspended solids during the first flush of a storm event.

- Deep Sump Catch Basin:
 Precast structure equipped with grated inlet and 4' sump to allow sediment to settle out.
- Isolator Row:
 Single row of underground chambers wrapped in geotextile to filter out sediment. Equipped with overflow into remaining chambers.
- Vegetated Filter Strip:
 Uniformly graded vegetated surfaces that receive runoff from adjacent impervious surfaces via sheet flow.

Treatment BMPs:

Exfiltrating Bioretention Area:

Shallow depressions filled with sandy soil topped with a thick layer of mulch and planted with dense native vegetation. Equipped with overflow and underdrain.

• Wet Basin/Pond:

Wet Basins us a permanent pool of water as the primary mechanism to treat stormwater. The pool allows sediments to settle and removes soluble pollutants.

Infiltration BMPs:

- Subsurface Structures:
 - Underground chambers surrounded by stone used to store large volumes of stormwater and allow for infiltration into the groundwater.
- Infiltration Basin:
 Stormwater runoff impoundments that are constructed over permeable soils.

Other Maintenance Activity:

- Mosquito Control Both above ground and underground stormwater BMPs have the potential to serve as mosquito breeding areas. Good design, proper operation and maintenance, and treatment with larvicides can minimize this potential. See the supplemental information for Mosquito Control in Stormwater Management Practices, and the Operation and Maintenance Plan Schedule for inspection schedule.
- Street Sweeping Clear accumulations of winter sand in parking lots and along roadways at least once a year, preferably in the spring. Accumulations on pavement may be removed by pavement sweeping. Accumulations of sand along road shoulders may be removed by grading excess sand to the pavement edge and removing it manually or by a front-end loader.

Inspection and Maintenance Frequency and Corrective Measures

In accordance with MA DEP Stormwater Handbook: Volume 2, Chapter 2; the previously described BMPs will be inspected and the identified deficiencies will be corrected. Clean-out must include the removal and legal disposal of any accumulated sediments, trash, and debris. In any and all cases, operations, inspections, and maintenance activities shall utilize best practical measures to avoid and minimize impacts to wetland resource areas outside the footprint of the SMS.

Supplemental Information

- Operation & Maintenance Plan Schedule
- Massachusetts Stormwater Handbook, Chapter 5, Miscellaneous Stormwater Topics, Mosquito Control in Stormwater Management Practices.

Project: 200 Quannapowitt Parkway Project Address: 200 Quannapowitt Parkway Wakefield, MA

Responsible for O&M Plan: Cabot, Cabot & Forbes Address: 185 Dartmouth Street Boston, MA

All information within table is derived from Massachussetts Stormwater Handbook: Volume 2, Chapter 2 RMP OR RMP OR INSPECTION							
BMP CATEGORY	BMP OR MAINTENANCE	SCHEDULE/ FREQUENCY	NCE SCHEDULE/ NOTES	NOTES	ANNUAL MAINTENANCE	PERFO	RMED
	ACTIVITY	Q		COST	DATE:	BY:	
RETREATMENT Ps	DEEP SUMP CATCH BASIN	Four times per year (quarterly).	Inspect and clean catch basin units whenever the depth of deposits is greater than or equal to one half the depth from the bottom of the invert of the lowest pipe in the basin.	\$1,000			
STRUCTURAL PRETREATMENT BMPs	VEGETATED FILTER STRIPS	Inspect every six months during the first year and annually thereafter. Mow and remove sediment as needed.	Inspect the vegetation for signs of erosion, bare spots, and overall health. Regularly mow the grass. Remove sediment from the toe of slope or level spreader and reseed bare spots.	\$250			
VT BMPs	WET BASIN	Remove trash monthly. Remove sediment from basin as necessary and at least once every 10 years.	slopes and emergency embankment at least tv	\$2,000			
TREATMENT BMPs	BIORETENTION AREA & RAIN GARDEN	Remove trash monthly. Remove and replace dead vegetation, prune and mulch annually.	Inspect & remove trash, Mulch, Remove dead vegetation, Replace dead vegetation, Prune, Replace entire media & all vegetation.	\$3,000			
INFILTRATION BMPs	INFILTRATION BASIN	storm during first 3	Inspect to ensure proper functioning. Mow the buffer area, side slopes, and basin bottom if grassed floor, rake if stone bottom; remove trash and debris; remove grass clippings and accumulated organic matter. Inspect and clean pretreatment devices.	\$1,500			
	SUBSURFACE STRUCTURES	Inspect structure inlets at least twice a year. Remove debris that may clog the system as needed.	Because subsurface structures are installed underground, they are extremely difficult to maintain. Remove any debris that might clog the system.	\$500			
питу	MISQUITO CONTROL	Inspect BMPs as needed to ensure the system's drainage time is less than the maximum 72 hour period.	Massachusetts stormwater handbook requires all stormwater practices that are designed to drain do so within 72 hours to reduce the number of mosquitos that mature to adults since the aquatic stage of a mosquito is 7-10 days.	\$100			
OTHER MAINTENANCE ACTIVITY	SNOW STORAGE	Clear and remove snow to approved storage locations as necessary to ensure systems are working properly and are protected from meltwater pollutants.	Carefully select snow disposal sites before winter. Avoid dumping removed snow over catch basins, or in detention ponds, sediment forebays, rivers, wetlands, and flood plains. It is also prohibited to dump snow in the bioretention basins or gravel swales.	\$500			
	STREET SWEEPING	Clear accumulations of winter sand in parking lots and along roadways at least once a year, preferably in the spring.	Sweep, power broom or vacuum paved areas. Submit information that confirms that all street sweepings have been completed in accordance with state and local requirements	\$2,000			

Chapter 5 Miscellaneous Stormwater Topics

Mosquito Control in Stormwater Management Practices

Both aboveground and underground stormwater BMPs have the potential to serve as mosquito breeding areas. Good design, proper operation and maintenance and treatment with larvicides can minimize this potential.

EPA recommends that stormwater treatment practices dewater within 3 days (72 hours) to reduce the number of mosquitoes that mature to adults, since the aquatic stage of many mosquito species is 7 to 10 days. Massachusetts has had a 72-hour dewatering rule in its Stormwater Management Standards since 1996. The 2008 technical specifications for BMPs set forth in Volume 2, Chapter 2 of the Massachusetts Stormwater Handbook also concur with this practice by requiring that all stormwater practices designed to drain do so within 72 hours.

Some stormwater practices are designed to include permanent wet pools. These practices – if maintained properly – can limit mosquito breeding by providing habitat for mosquito predators. Additional measures that can be taken to reduce mosquito populations include increasing water circulation, attracting mosquito predators by adding suitable habitat, and applying larvicides.

The Massachusetts State Reclamation and Mosquito Control Board (SRMCB), through the Massachusetts Mosquito Control Districts, can undertake further mosquito control actions specifically for the purpose of mosquito control pursuant to Massachusetts General Law Chapter 252. The Mosquito Control Board, http://www.mass.gov/agr/mosquito/, describes mosquito control methods and is in the process of developing guidance documents that describe Best Management Practices for mosquito control projects.

The SRMCB and Mosquito Control Districts are not responsible for operating and maintaining stormwater BMPs to reduce mosquito populations. The owners of property that construct the stormwater BMPs or municipalities that "accept" them through local subdivision approval are responsible for their maintenance. The SRMCB is composed of officials from MassDEP, Department of Agricultural Resources, and Department of Conservation and Recreation. The nine (9) Mosquito Control Districts overseen by the SRMCB are located throughout Massachusetts, covering 176 municipalities.

Construction Period Best Management Practices for Mosquito Control

To minimize mosquito breeding during construction, it is essential that the following actions be taken to minimize the creation of standing pools by taking the following actions:

- *Minimize Land Disturbance:* Minimizing land disturbance reduces the likelihood of mosquito breeding by reducing silt in runoff that will cause construction period controls to clog and retain standing pools of water for more than 72 hours.
- Catch Basin inlets: Inspect and refresh filter fabric, hay bales, filter socks or stone dams on a regular basis to ensure that any stormwater ponded at the inlet drains within 8 hours after precipitation stops. Shorter periods may be necessary to avoid hydroplaning in roads

_

¹ MassDEP and MassHighway understand that the numerous stormwater BMPs along state highways pose a unique challenge. To address this challenge, the 2004 MassHighway Stormwater Handbook will provide additional information on appropriate operation and maintenance practices for mosquito control when the Handbook is revised to reflect the 2008 changes to the Stormwater Management Standards..

- caused by water ponded at the catch basin inlet. Treat catch basin sumps with larvicides such as *Bacillus sphaericus* (*Bs*) using a licensed pesticide applicator.
- *Check Dams:* If temporary check dams are used during the construction period to lag peak rate of runoff or pond runoff for exfiltration, inspect and repair the check dams on a regular basis to ensure that any stormwater ponded behind the check dam drains within 72 hours.
- **Design construction period sediment traps** to dewater within 72 hours after precipitation. Because these traps are subject to high silt loads and tend to clog, treat them with the larvicide *Bs* after it rains from June through October, until the first frost occurs.
- Construction period open conveyances: When temporary manmade ditches are used for channelizing construction period runoff, inspect them on a regular basis to remove any accumulated sediment to restore flow capacity to the temporary ditch.
- Revegetating Disturbed Surfaces: Revegetating disturbed surfaces reduces sediment in runoff that will cause construction period controls to clog and retain standing pools of water for greater than 72 hours.
- Sediment fences/hay bale barriers: When inspections find standing pools of water beyond the 24-hour period after a storm, take action to restore barrier to its normal function.

Post-Construction Stormwater Treatment Practices

- Mosquito control begins with the environmentally sensitive site design. Environmentally sensitive site design that minimizes impervious surfaces reduces the amount of stormwater runoff. Disconnecting runoff using the LID Site Design credits outlined in the Massachusetts Stormwater Handbook reduces the amount of stormwater that must be conveyed to a treatment practice. Utilizing green roofs minimizes runoff from smaller storms. Storage media must be designed to dewater within 72 hours after precipitation.
- Mosquito control continues with the selection of structural stormwater BMPs that are unlikely to become breeding grounds for mosquitoes, such as:
 - o *Bioretention Areas/Rain Gardens/Sand Filter:* These practices tend not to result in mosquito breeding. If any level spreaders, weirs or sediment forebays are used as part of the design, inspect them and correct them as necessary to prevent standing pools of water for more than 72 hours.
 - o *Infiltration Trenches:* This practice tends not to result in mosquito breeding. If any level spreaders, weirs, or sediment forebays are used as part of the design, inspect them and correct them as necessary to prevent standing pools of water for more than 72 hours.
- Another mosquito control strategy is to select BMPs that can become habitats for mosquito predators, such as:
 - Constructed Stormwater Wetlands: Habitat features can be incorporated in constructed stormwater wetlands to attract dragonflies, amphibians, turtles, birds, bats, and other natural predators of mosquitoes.
 - O Wet Basins: Wet basins can be designed to incorporate fish habitat features, such as deep pools. Introduce fish in consultation with Massachusetts Division of Fisheries and Wildlife. Vegetation within wet basins designed as fish habitat must be properly managed to ensure that vegetation does not overtake the habitat. Proper design to ensure that no low circulation or "dead" zones are created may reduce the potential for mosquito breeding. Introducing bubblers may increase water circulation in the wet basin.

Effective mosquito controls require proponents to design structural BMPs to prevent ponding and facilitate maintenance and, if necessary, the application of larvicides. Examples of such design practices include the following:

- *Basins:* Provide perimeter access around wet basins, extended dry detention basins and dry detention basins for both larviciding and routine maintenance. Control vegetation to ensure that access pathways stay open.
- *BMPs without a permanent pool of water:* All structural BMPs that do not rely on a permanent pool of water must drain and completely dewater within 72 hours after precipitation. This includes dry detention basins, extended dry detention basins, infiltration basins, and dry water quality swales. Use underdrains at extended dry detention basins to drain the small pools that form due to accumulation of silts. Wallace indicates that extended dry extended detention basins may breed more mosquitoes than wet basins. It is, therefore, imperative to design outlets from extended dry detention basins to completely dewater within the 72-hour period.
- *Energy Dissipators and Flow Spreaders:* Currier and Moeller, 2000 indicate that shallow recesses in energy dissipators and flow spreaders trap water where mosquitoes breed. Set the riprap in grout to reduce the shallow recesses and minimize mosquito breeding.
- Outlet control structures: Debris trapped in small orifices or on trash racks of outlet
 control structures such as multiple stage outlet risers may clog the orifices or the trash
 rack, causing a standing pool of water. Optimize the orifice size or trash rack mesh size
 to provide required peak rate attenuation/water quality detention/retention time while
 minimizing clogging.
- *Rain Barrels and Cisterns:* Seal lids to reduce the likelihood of mosquitoes laying eggs in standing water. Install mosquito netting over inlets. The cistern system should be designed to ensure that all collected water is drained into it within 72 hours.
- Subsurface Structures, Deep Sump Catch Basins, Oil Grit Separators, and Leaching Catch Basins: Seal all manhole covers to reduce likelihood of mosquitoes laying eggs in standing water. Install mosquito netting over the outlet (CALTRANS 2004).

The Operation and Maintenance Plan should provide for mosquito prevention and control.

- *Check dams:* Inspect permanent check dams on the schedule set forth in the O&M Plan. Inspect check dams 72 hours after storms for standing water ponding behind the dam. Take corrective action if standing water is found.
- *Cisterns:* Apply *Bs* larvicide in the cistern if any evidence of mosquitoes is found. The Operation and Maintenance Plan shall specify how often larvicides should be applied to waters in the cistern.
- Water quality swales: Remove and properly dispose of any accumulated sediment as scheduled in the Operation and Maintenance Plan.
- *Larvicide Treatment:* The Operation and Maintenance Plan must include measures to minimize mosquito breeding, including larviciding.
- The party identified in the Operation and Maintenance Plan as responsible for maintenance shall see that larvicides are applied as necessary to the following stormwater treatment practices: catch basins, oil/grit separators, wet basins, wet water quality swales, dry extended detention basins, infiltration basins, and constructed stormwater wetlands. The Operation and Maintenance Plan must ensure that all larvicides are applied by a licensed pesticide applicator and in compliance with all pesticide label requirements.
- The Operation and Maintenance Plan should identify the appropriate larvicide and the time and method of application. For example, *Bacillus sphaericus* (*Bs*), the preferred

larvicide for stormwater BMPs, should be hand-broadcast.² Alternatively, Altosid, a Methopren product, may be used. Because some practices are designed to dewater between storms, such as dry extended detention and infiltration basins, the Operation and Maintenance Plan should provide that larviciding must be conducted during or immediately after wet weather, when the detention or infiltration basin has a standing pool of water, unless a product is used that can withstand extended dry periods.

REFERENCES

California Department of Transportation, 2004, BMP Retrofit Pilot Program, Final Report, Report ID CTSW - RT - 1 - 050,

http://www.dot.ca.gov/hq/env/stormwater/special/newsetup/ pdfs/new technology/CTSW-RT-01-050.pdf#xml=http://dap1.dot.ca.gov/cgi-

bin/texis/webinator/search/pdfhi.txt?query=mosquito&db=db&pr=www&prox=page&rorder=50 0&rprox=500&rdfreq=500&rwfreq=500&rlead=500&sufs=0&order=r&cq=&id=4673373b7 Appendix E: Vector Monitoring and Abatement,

http://www.dot.ca.gov/hq/env/stormwater/special/newsetup/_pdfs/new_technology/

California Department of Transportation, 2001, Final Vector Report, Caltrans BMP Retrofit Project Sites, Districts 7 and 11,

http://www.dot.ca.gov/hq/env/stormwater/special/newsetup/ pdfs/new technology/CTSW-RT-01-050/AppendixE/01 FinalVectorReport.pdf

Currier, Brian, and Moeller, 2000, Glenn, Lessons Learned: The CALTRANS Storm Water Best Management Practice Retrofit Pilot Study, prepared by the California State University Sacramento and University of California Davis for the California Department of Transportation, http://www.owp.csus.edu/research/papers/papers/PP015.pdf

Massachusetts Department of Environmental Protection, 2001, West Nile Virus, Application of Pesticides to Wetland Resource Areas and Buffer Zones and Public Water systems, Guideline No. BRPG01-02. http://www.mass.gov/dep/water/wnvpolcv.doc

O'Meara, G.F., 2003, Mosquitoes Associated With Stormwater Detention/Retention Areas. ENY627, University of Florida, Institute of Food and Agricultural Sciences Extension, http://edis.ifas.ufl.edu/mg338

Taylor, Scott M., and Currier, Brian, 1999, A Wet Pond as a Storm Water Runoff BMP - Case Study, presented at Department of Environmental Resources Engineering, Humboldt State University, Arcata, California http://www.owp.csus.edu/research/papers/papers/PP004.pdf U.S. EPA, 2005, Stormwater Structures and Mosquitoes, EPA 833-F-05-003, http://www.epa.gov/npdes/pubs/sw wnv.pdf

U.S. EPA, 2003, Do Stormwater Retention Ponds Contribute to Mosquito Problems, Nonpoint source News-Notes, Issue No. 71, http://notes.tetratech-

ffx.com/newsnotes.nsf/0/143f7fa99c3ea25485256d0100618bc9?OpenDocument

Virginia Department of Conservation and Recreation, 2003, Vector Control, Mosquitoes and Stormwater Management, Stormwater Management Technical Bulletin No. 8,

http://www.dcr.virginia.gov/soil & water/documents/tecbltn8.pdf

Wallace, John R., Stormwater Management and Mosquito Ecology, Stormwater Magazine, March/April 2007, http://www.gradingandexcavation.com/sw_0703_management.html

² Bacillus thuringienis israelensis or Bti is usually applied by helicopter to wetlands and floodplains

Roads and Stormwater BMPs

In general, the stormwater BMPs used for land development projects can also be used for new roadways and roadway improvement projects. However, for improvement of existing roads, there are often constraints that limit the choice of BMP. These constraints derive from the linear configuration of the road, the limited area within the existing right-of-way, the structural and safety requirements attendant to good roadway design, and the long-term maintainability of the roadway drainage systems. The MassHighway Handbook provides strategies for dealing with the constraints associated with providing stormwater BMPs for roadway redevelopment projects.

Roadway design can minimize impacts caused by stormwater. Reducing roadway width reduces the total and peak volume of runoff. Designing a road with country drainage (no road shoulders or curbs) disconnects roadway runoff. Disconnection of roadway runoff is eligible for the Low Impact Site Design Credit provided the drainage is disconnected in accordance with specifications outlined in Volume 3.

Like other parties, municipalities that work within wetlands jurisdictional areas and adjacent buffer zones must design and implement structural stormwater best management practices in accordance with the Stormwater Management Standards and the Stormwater Management Handbook. In addition, in municipalities and areas where state agencies operate stormwater systems, the DPWs (or other town or state agencies) must meet the "good housekeeping" requirement of the municipality's or agency's MS4 permit.

MassHighway has taken stormwater management one step further by working with MassDEP to develop the MassHighway Storm Water Handbook for Highways and Bridges. The purpose of the MassHighway Handbook is to provide guidance for persons involved in the design, permitting, review and implementation of state highway projects, especially those involving existing roadways where physical constraints often limit the stormwater management options available. These constraints, like those common to redevelopment sites, may make it difficult to comply precisely with the requirements of the Stormwater Management Standards and the Massachusetts Stormwater Handbook.³ In response to these constraints, MassDEP and MHD developed specific design, permitting, review and implementation practices that meet the unique challenges of providing environmental protection for existing state roads. The information in the MassHighway Handbook may also aid in the planning and design of projects to build new highways and to add lanes to existing highways, since they may face similar difficulties in meeting the requirements of the Stormwater Management Standards.

Although it is very useful, the MassHighway Handbook does not allow MassHighway projects to proceed without individual review and approval by the issuing authority when subject to the Wetlands Protection Act Regulations, 310 CMR 10.00, or the 401 Water Quality Certification Regulations, 314 CMR 9.00. For example, MassHighway must provide a Conservation Commission with a project-specific Operation and Maintenance Plan in accordance with Standard 9 that documents how the project's post-construction BMPs will be operated and maintained.⁴

³ The 2004 MassHighway Handbook outlines standardized methods for dealing with these constraints as they apply to highway redevelopment projects. MassDEP and MassHighway intend to work together to provide guidance for add a lane projects when the 2004 Handbook is revised to reflect the 2008 changes to the Stormwater Management Standards.

⁴ The general permit for municipal separate storm sewer systems (the MS4 Permit) requires MassHighway to develop and implement procedures for the proper operation and maintenance of stormwater BMPs. To

Some municipalities have asked if the MassHighway Handbook governs municipal road projects. The answer is no.⁵ The MassHighway Handbook was developed in response to the unique problems and challenges arising out of the management of the state highway system. Like other project proponents, cities and towns planning road or other projects in areas subject to jurisdiction under the Wetlands Protection Act must design and implement LID, non-structural and structural best management practices in accordance with the Stormwater Management Standards and the Massachusetts Stormwater Handbook.

avoid duplication of effort, MassHighway may be able rely on the same procedures to fulfill the operation and maintenance requirements of Standard 9 and the MS 4 Permit.

⁵ Although the MassHighway Handbook does not govern municipal road projects, cities and towns may find some of the information presented in the Handbook useful.

Commonwealth of Massachusetts Executive Office of Energy & Environmental Affairs

Department of Environmental Protection

One Winter Street Boston, MA 02108 • 617-292-5500

Charles D. Baker Governor

Karyn E. Polito Lieutenant Governor Kathleen A. Theoharides Secretary

Martin Suuberg Commissioner

Massachusetts Department of Environmental Protection Bureau of Water Resources Snow Disposal Guidance

Effective Date: December 23, 2019

Applicability: Applies to all federal, state, regional and local agencies, as well as to private

businesses.

Supersedes: Bureau of Resource Protection (BRP) Snow Disposal Guideline No. BRPG97-1 issued December 12, 1997 and BRPG01-01 issued March 8, 2001; Bureau of Water Resources (BWR) snow disposal guidance issued December 21, 2015 and December 12, 2018.

Approved by: Kathleen Baskin, Assistant Commissioner, Bureau of Water Resources

PURPOSE: To provide guidelines to all government agencies and private businesses regarding snow disposal site selection, site preparation and maintenance, and emergency snow disposal options that are protective of wetlands, drinking water, and water bodies, and are acceptable to the Massachusetts Department of Environmental Protection (MassDEP), Bureau of Water Resources.

APPLICABILITY: These Guidelines are issued by MassDEP's Bureau of Water Resources on behalf of all Bureau Programs (including Drinking Water Supply, Wetlands and Waterways, Wastewater Management, and Watershed Planning and Permitting). They apply to all federal agencies, state agencies, state authorities, municipal agencies and private businesses disposing of snow in the Commonwealth of Massachusetts.

INTRODUCTION

Finding a place to dispose of collected snow poses a challenge to municipalities and businesses as they clear roads, parking lots, bridges, and sidewalks. While MassDEP is aware of the threats to public safety caused by snow, collected snow that is contaminated with road salt, sand, litter, and automotive pollutants such as oil also threatens public health and the environment.

As snow melts, road salt, sand, litter, and other pollutants are transported into surface water or through the soil where they may eventually reach the groundwater. Road salt and other pollutants can contaminate water supplies and are toxic to aquatic life at certain levels. Sand washed into

This information is available in alternate format. Contact Michelle Waters-Ekanem, Director of Diversity/Civil Rights at 617-292-5751.

TTY# MassRelay Service 1-800-439-2370

waterbodies can create sand bars or fill in wetlands and ponds, impacting aquatic life, causing flooding, and affecting our use of these resources.

There are several steps that communities can take to minimize the impacts of snow disposal on public health and the environment. These steps will help communities avoid the costs of a contaminated water supply, degraded waterbodies, and flooding. Everything that occurs on the land has the potential to impact the Commonwealth's water resources. Given the authority of local government over the use of the land, municipal officials and staff have a critically important role to play in protecting our water resources.

The purpose of these guidelines is to help federal agencies, state agencies, state authorities, municipalities and businesses select, prepare, and maintain appropriate snow disposal sites before the snow begins to accumulate through the winter. Following these guidelines and obtaining the necessary approvals may also help municipalities in cases when seeking reimbursement for snow disposal costs from the Federal Emergency Management Agency is possible.

RECOMMENDED GUIDELINES

These snow disposal guidelines address: (1) site selection; (2) site preparation and maintenance; and (3) emergency snow disposal.

1. SITE SELECTION

The key to selecting effective snow disposal sites is to locate them adjacent to or on pervious surfaces in upland areas or upland locations on impervious surfaces away from water resources and drinking water wells. At these locations, the snow meltwater can filter into the soil, leaving behind sand and debris which can be removed in the spring. The following conditions should be followed:

- Within water supply Zone A and Zone II, avoid storage or disposal of snow and ice containing deicing chemicals that has been collected from streets located outside these zones. Municipalities may have a water supply protection land use control that prohibits the disposal of snow and ice containing deicing chemicals from outside the Zone A and Zone II, subject to the Massachusetts Drinking Water Regulations at 310 CMR 22.20C and 310 CMR 22.21(2).
- Avoid storage or disposal of snow or ice in Interim Wellhead Protection Areas (IWPA) of public water supply wells, and within 75 feet of a private well, where road salt may contaminate water supplies.
- Avoid dumping snow into any waterbody, including rivers, the ocean, reservoirs, ponds, or wetlands. In addition to water quality impacts and flooding, snow disposed of in open water can cause navigational hazards when it freezes into ice blocks.
- Avoid dumping snow on MassDEP-designated high and medium-yield aquifers where it may contaminate groundwater.
- Avoid dumping snow in sanitary landfills and gravel pits. Snow meltwater will create more contaminated leachate in landfills posing a greater risk to groundwater, and in gravel pits, there is little opportunity for pollutants to be filtered out of the meltwater because groundwater is close to the land surface.

Avoid disposing of snow on top of storm drain catch basins or in stormwater drainage
systems including detention basins, swales or ditches. Snow combined with sand and
debris may block a stormwater drainage system, causing localized flooding. A high
volume of sand, sediment, and litter released from melting snow also may be quickly
transported through the system into surface water.

Recommended Site Selection Procedures

It is important that the municipal Department of Public Works or Highway Department, Conservation Commission, and Board of Health work together to select appropriate snow disposal sites. The following steps should be taken:

- Estimate how much snow disposal capacity may be needed for the season so that an adequate number of disposal sites can be selected and prepared.
- Identify sites that could potentially be used for snow disposal, such as municipal open space (e.g., parking lots or parks).
- Select sites located in upland locations that are not likely to impact sensitive environmental resources first.
- If more storage space is still needed, prioritize the sites with the least environmental impact (using the site selection criteria, and local or MassGIS maps as a guide).

Snow Disposal Mapping Assistance

MassDEP has an online mapping tool to assist in identifying possible locations to potentially dispose of snow. MassDEP encourages municipalities to use this tool to identify possible snow disposal options. The tool identifies wetland resource areas, public drinking water supplies and other sensitive locations where snow should not be disposed. The tool may be accessed through the Internet at the following web address:

https://maps.env.state.ma.us/dep/arcgis/js/templates/PSF/.

2. SITE PREPARATION AND MAINTENANCE

In addition to carefully selecting disposal sites before the winter begins, it is important to prepare and maintain these sites to maximize their effectiveness. The following maintenance measures should be undertaken for all snow disposal sites:

- A silt fence or equivalent barrier should be placed securely on the downgradient side of the snow disposal site.
- Wherever possible maintain a 50-foot vegetated buffer between the disposal site and adjacent waterbodies to filter pollutants from the meltwater.
- Clear debris from the site prior to using the site for snow disposal.
- Clear debris from the site and properly dispose of it at the end of the snow season, and no later than May 15.

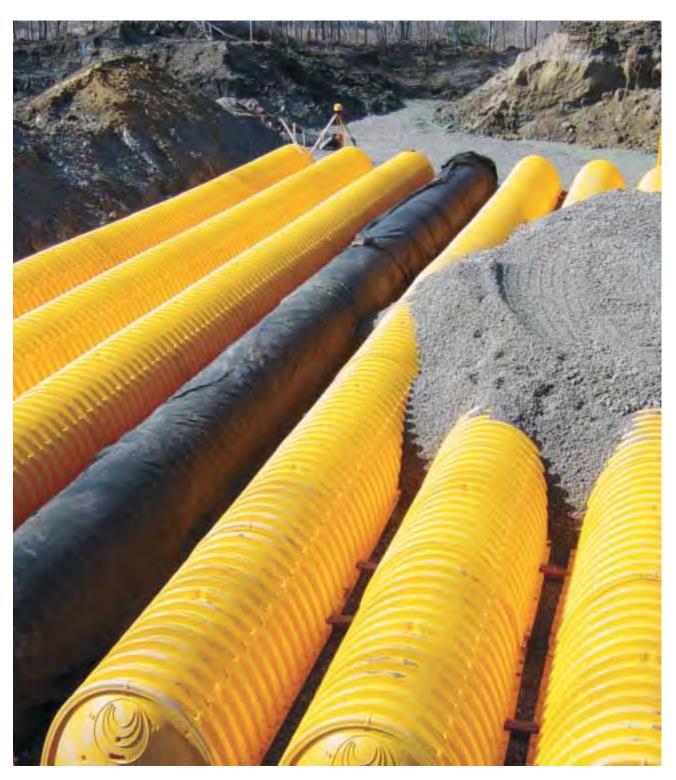
3. SNOW DISPOSAL APPROVALS

Proper snow disposal may be undertaken through one of the following approval procedures:

- Routine snow disposal Minimal, if any, administrative review is required in these cases when upland and pervious snow disposal locations or upland locations on impervious surfaces that have functioning and maintained stormwater management systems have been identified, mapped, and used for snow disposal following ordinary snowfalls. Use of upland and pervious snow disposal sites avoids wetland resource areas and allows snow meltwater to recharge groundwater and will help filter pollutants, sand, and other debris. This process will address the majority of snow removal efforts until an entity exhausts all available upland snow disposal sites. The location and mapping of snow disposal sites will help facilitate each entity's routine snow management efforts.
- Emergency Certifications If an entity demonstrates that there is no remaining capacity at upland snow disposal locations, local conservation commissions may issue an Emergency Certification under the Massachusetts Wetlands Protection regulations to authorize snow disposal in buffer zones to wetlands, certain open water areas, and certain wetland resource areas (i.e. within flood plains). Emergency Certifications can only be issued at the request of a public agency or by order of a public agency for the protection of the health or safety of citizens, and are limited to those activities necessary to abate the emergency. See 310 CMR 10.06(1)-(4). Use the following guidelines in these emergency situations:
 - Dispose of snow in open water with adequate flow and mixing to prevent ice dams from forming.
 - Do not dispose of snow in salt marshes, vegetated wetlands, certified vernal pools, shellfish beds, mudflats, drinking water reservoirs and their tributaries, Zone IIs or IWPAs of public water supply wells, Outstanding Resource Waters, or Areas of Critical Environmental Concern.
 - Do not dispose of snow where trucks may cause shoreline damage or erosion.
 - Consult with the municipal Conservation Commission to ensure that snow disposal in open water complies with local ordinances and bylaws.
- Severe Weather Emergency Declarations In the event of a large-scale severe weather event, MassDEP may issue a broader Emergency Declaration under the Wetlands Protection Act which allows federal agencies, state agencies, state authorities, municipalities, and businesses greater flexibility in snow disposal practices. Emergency Declarations typically authorize greater snow disposal options while protecting especially sensitive resources such as public drinking water supplies, vernal pools, land containing shellfish, FEMA designated floodways, coastal dunes, and salt marsh. In the event of severe winter storm emergencies, the snow disposal site maps created by municipalities will enable MassDEP and the Massachusetts Emergency Management Agency (MEMA) in helping communities identify appropriate snow disposal locations.

If upland disposal sites have been exhausted, the Emergency Declaration issued by MassDEP allows for snow disposal near water bodies. In these situations, a buffer of at

least 50 feet, preferably vegetated, should still be maintained between the site and the waterbody. Furthermore, it is essential that the other guidelines for preparing and maintaining snow disposal sites be followed to minimize the threat to adjacent waterbodies.


Under extraordinary conditions, when all land-based snow disposal options are exhausted, the Emergency Declaration issued by MassDEP may allow disposal of snow in certain waterbodies under certain conditions. A federal agency, state agency, state authority, municipality or business seeking to dispose of snow in a waterbody should take the following steps:

- Call the emergency contact phone number [(888) 304-1133)] and notify the MEMA of the municipality's intent.
- MEMA will ask for some information about where the requested disposal will take place.
- MEMA will confirm that the disposal is consistent with MassDEP's Severe Weather Emergency Declaration and these guidelines and is therefore approved.

During declared statewide snow emergency events, MassDEP's website will also highlight the emergency contact phone number [(888) 304-1133)] for authorizations and inquiries. For further non-emergency information about this Guidance you may contact your MassDEP Regional Office Service Center:

Northeast Regional Office, Wilmington, 978-694-3246 Southeast Regional Office, Lakeville, 508-946-2714 Central Regional Office, Worcester, 508-792-7650 Western Regional Office, Springfield, 413-755-2114

Isolator™ Row O&M Manual

StormTech® Chamber System for Stormwater Management

1.0 The Isolator[™] Row

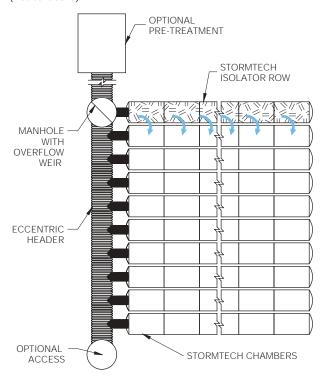
1.1 INTRODUCTION

An important component of any Stormwater Pollution Prevention Plan is inspection and maintenance. The StormTech Isolator Row is a patent pending technique to inexpensively enhance Total Suspended Solids (TSS) removal and provide easy access for inspection and maintenance.

Looking down the Isolator Row from the manhole opening, woven geotextile is shown between the chamber and stone base.

1.2 THE ISOLATOR™ ROW

The Isolator Row is a row of StormTech chambers, either SC-740 or SC-310 models, that is surrounded with filter fabric and connected to a closely located manhole for easy access. The fabric-wrapped chambers provide for settling and filtration of sediment as storm water rises in the Isolator Row and ultimately passes through the filter fabric. The open bottom chambers and perforated sidewalls allow storm water to flow both vertically and horizontally out of the chambers. Sediments are captured in the Isolator Row protecting the storage areas of the adjacent stone and chambers from sediment accumulation.


Two different fabrics are used for the Isolator Row. A woven geotextile fabric is placed between the stone and the Isolator Row chambers. The tough geotextile provides a media for storm water filtration and provides a durable surface for maintenance operations. It is also designed to prevent scour of the underlying stone and remain intact during high pressure jetting. A non-woven fabric is placed over the chambers to provide a filter media for flows passing through the perforations in the sidewall of the chamber.

The Isolator Row is typically designed to capture the "first flush" and offers the versatility to be sized on a volume basis or flow rate basis. An upstream manhole not only provides access to the Isolator Row but typically includes a high flow weir such that storm water flowrates or volumes that exceed the capacity of the Isolator Row overtop the over flow weir and discharge through a manifold to the other chambers.

The Isolator Row may also be part of a treatment train. By treating storm water prior to entry into the chamber system, the service life can be extended and pollutants such as hydrocarbons can be captured. Pre-treatment best management practices can be as simple as deep sump catch basins, oil-water separators or can be innovative storm water treatment devices. The design of the treatment train and selection of pretreatment devices by the design engineer is often driven by regulatory requirements. Whether pretreatment is used or not, the Isolator Row is recommended by StormTech as an effective means to minimize maintenance requirements and maintenance costs.

Note: See the StormTech Design Manual for detailed information on designing inlets for a StormTech system, including the Isolator Row.

StormTech Isolator Row with Overflow Spillway (not to scale)

2.0 Isolator Row Inspection/Maintenance Storm

2.1 INSPECTION

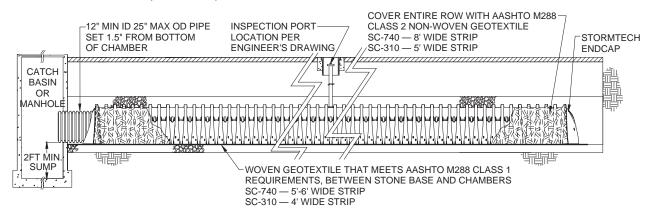
The frequency of Inspection and Maintenance varies by location. A routine inspection schedule needs to be established for each individual location based upon site specific variables. The type of land use (i.e. industrial, commercial residential), anticipated pollutant load, percent imperviousness, climate, etc. all play a critical role in determining the actual frequency of inspection and maintenance practices.

At a minimum, StormTech recommends annual inspections. Initially, the Isolator Row should be inspected every 6 months for the first year of operation. For subsequent years, the inspection should be adjusted based upon previous observation of sediment deposition.

The Isolator Row incorporates a combination of standard manhole(s) and strategically located inspection ports (as needed). The inspection ports allow for easy access to the system from the surface, eliminating the need to perform a confined space entry for inspection purposes.

If upon visual inspection it is found that sediment has accumulated, a stadia rod should be inserted to determine the depth of sediment. When the average depth of sediment exceeds 3 inches throughout the length of the Isolator Row, clean-out should be performed.

2.2 MAINTENANCE


The Isolator Row was designed to reduce the cost of periodic maintenance. By "isolating" sediments to just one row, costs are dramatically reduced by eliminating the need to clean out each row of the entire storage bed. If inspection indicates the potential need for maintenance, access is provided via a manhole(s) located on the end(s) of the row for cleanout. If entry into the manhole is required, please follow local and OSHA rules for a confined space entries.

Examples of culvert cleaning nozzles appropriate for Isolator Row maintenance. (These are not StormTech products.)

Maintenance is accomplished with the JetVac process. The JetVac process utilizes a high pressure water nozzle to propel itself down the Isolator Row while scouring and suspending sediments. As the nozzle is retrieved, the captured pollutants are flushed back into the manhole for vacuuming. Most sewer and pipe maintenance companies have vacuum/JetVac combination vehicles. Selection of an appropriate JetVac nozzle will improve maintenance efficiency. Fixed nozzles designed for culverts or large diameter pipe cleaning are preferable. Rear facing jets with an effective spread of at least 45" are best. Most JetVac reels have 400 feet of hose allowing maintenance of an Isolator Row up to 50 chambers long. The JetVac process shall only be performed on StormTech Isolator Rows that have AASHTO class 1 woven geotextile (as specified by StormTech) over their angular base stone.

StormTech Isolator Row (not to scale)

3.0 Isolator Row Step By Step Maintenance Procedures

StormTech Isolator Row (not to scale)

Step 1) Inspect Isolator Row for sediment

- A) Inspection ports (if present)
 - i. Remove lid from floor box frame
 - ii. Remove cap from inspection riser
 - iii. Using a flashlight and stadia rod, measure depth of sediment and record results on maintenance log.
 - iv. If sediment is at, or above, 3 inch depth proceed to Step 2. If not proceed to step 3.

B) All Isolator Rows

- Remove cover from manhole at upstream end of Isolator Row
- ii. Using a flashlight, inspect down Isolator Row through outlet pipe
 - 1. Mirrors on poles or cameras may be used to avoid a confined space entry
 - 2. Follow OSHA regulations for confined space entry if entering manhole
- iii. If sediment is at or above the lower row of sidewall holes (approximately 3 inches) proceed to Step 2. If not proceed to Step 3.

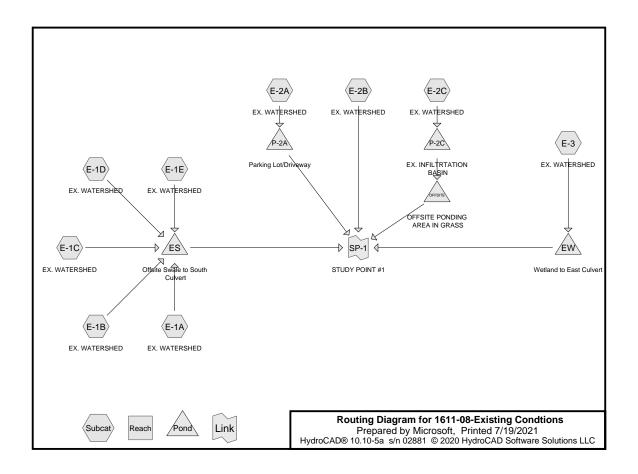
Step 2) Clean out Isolator Row using the JetVac process

- A) A fixed culvert cleaning nozzle with rear facing nozzle spread of 45 inches or more is preferable
- B) Apply multiple passes of JetVac until backflush water is clean
- C) Vacuum manhole sump as required
- Step 3) Replace all caps, lids and covers, record observations and actions
- Step 4) Inspect & clean catch basins and manholes upstream of the StormTech system

Sample Maintenance Log

	Stadia Rod	l Readings	Codimont		
Date	Fixed point to chamber bottom (1)	Fixed point to top of sediment (2)	Sediment Depth (1) - (2)	Observations/Actions	Inspector
3/15/01	6.3 ft.	none		New installation. Fixed point is CI frame at grade	djm
9/24/01		6.2	0.1 ft.	Some grit felt	sm
6/20/03		5.8	0.5 ft.	Mucky feel, debris visible in manhole and in Isolator row, maintenance due	rv
7/7/03	6.3 ft.		0	System jetted and vacuumed	djm

Subsurface Stormwater Management[™]


 20 Beaver Road, Suite 104
 Wethersfield
 Connecticut
 06109

 860.529.8188
 888.892.2694
 fax 866.328.8401
 www.stormtech.com

SECTION 3.0 -

EXISTING DRAINAGE ANALYSIS

1611-08-Existing Condtions
Prepared by Microsoft
HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Printed 7/19/2021 Page 2

Rainfall Events Listing

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	2-Year	Type III 24-hr		Default	24.00	1	3.10	2
2	10-Year	Type III 24-hr		Default	24.00	1	4.50	2
3	100-Year	Type III 24-hr		Default	24.00	1	6.50	2

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Printed 7/19/2021

Page 3

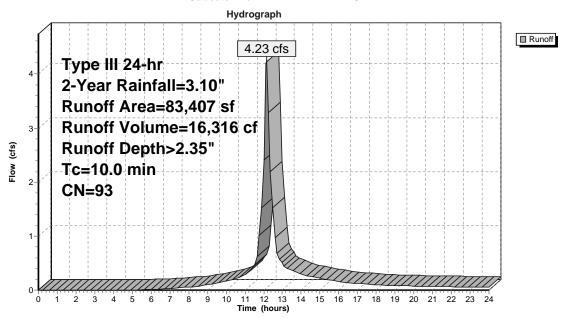
Ground	Covers	(all	nodes)

HSG-A (sq-ft)	HSG-B (sq-ft)	HSG-C (sq-ft)	HSG-D (sq-ft)	Other (sq-ft)	Total (sq-ft)	Ground Cover	Subcatchment Numbers
0	0	31,336	0	0	31,336	<50% Grass cover, Poor	E-1A, E-1B, E-1C, E-1D, E-1E, E-2A, E-2B, E-2C
0	0	137,725	0	0	137,725	>75% Grass cover, Good	E-1A, E-1B, E-1C, E-1D, E-1E, E-2B, E-2C, E-3
0	0	15,843	0	0	15,843	Gravel surface	E-1E, E-2B, E-2C, E-3 E-1E
0	0	0	0	425,412	425,412	Impervious	E-1A, E-1B, E-1C, E-1D, E-1E, E-2A, E-2B, E-2C, E-3
0	0	150,817	237,023	0	387,840	Woods, Good	E-3
0	0	0	46,239	0	46,239	Woods/grass comb., Good	E-1A, E-1B, E-1C, E-1D
0	0	335.721	283,262	425.412	1.044.395	TOTAL AREA	

1611-08-Existing Condtions
Prepared by Microsoft
HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 4

Summary for Subcatchment E-1A: EX. WATERSHED


Runoff = 4.23 cfs @ 12.14 hrs, Volume= 16,316 cf, Depth> 2.35"

	Area (sf)	CN	Description								
	6,343	86	<50% Gras	s cover, Po	or, HSG C						
	8,692	74	>75% Gras	s cover, Go	od, HSG C						
	5,285	79	Woods/gra	ss comb., G	ood, HSG D						
*	63,087	98	Impervious	ervious							
	83,407	93	Weighted A	eighted Average							
	20,320		24.36% Pe	rvious Area							
	63,087		75.64% lm	pervious Are	ea						
	Tc Length	Slop		Capacity	Description						
(m	in) (feet)	(ft/1	t) (ft/sec)	(cfs)							
10	0.0				Direct Entry,	, MIN. TC					

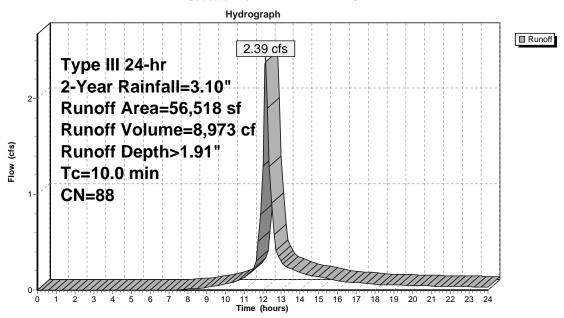
Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Page 5

Subcatchment E-1A: EX. WATERSHED

1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 6


Summary for Subcatchment E-1B: EX. WATERSHED

Runoff = 2.39 cfs @ 12.14 hrs, Volume= 8,973 cf, Depth> 1.91"

	Area (sf)	CN	Description	ı									
	3,722	86	<50% Gras	s cover, Po	or, HSG C								
	8,826	74	>75% Gras	% Grass cover, Good, HSG C									
	14,964	79	Woods/gra	ss comb., G	ood, HSG D								
*	29,006	98	Impervious	rvious									
	56,518	88	Weighted A	eighted Average									
	27,512		48.68% Pe	rvious Area									
	29,006		51.32% lm	pervious Are	ea								
	Tc Length		,		Description								
(m	in) (feet)	(ft/1	(ft/sec)	(cfs)									
10	0.0				Direct Entry, I	MIN. TC							

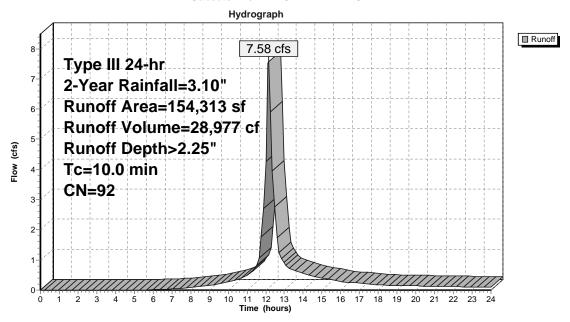
Page 7

Subcatchment E-1B: EX. WATERSHED

1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 8

Summary for Subcatchment E-1C: EX. WATERSHED


Runoff = 7.58 cfs @ 12.14 hrs, Volume= 28,977 cf, Depth> 2.25"

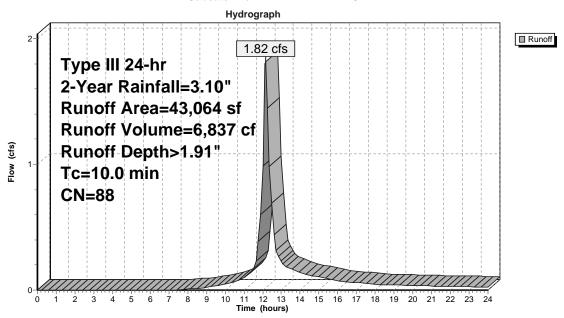
	Area (sf)	CN	Description							
	3,840	86	<50% Grass cover, Poor, HSG C							
	20,360	74	>75% Grass cover, Good, HSG C							
	23,421	79	Woods/grass comb., Good, HSG D							
*	106,692	98	ervious							
	154,313	92	Weighted Average							
	47,621		30.86% Pervious Area							
	106,692		69.14% Impervious Area							
	Tc Length	Slop	1							
(n	nin) (feet)	(ft/	ft) (ft/sec) (cfs)							
1	0.0		Direct Entry, MIN. TC							

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Page 9

Subcatchment E-1C: EX. WATERSHED

1611-08-Existing Condtions


Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 10

Summary for Subcatchment E-1D: EX. WATERSHED

Runoff = 1.82 cfs @ 12.14 hrs, Volume= 6,837 cf, Depth> 1.91"

	Area (sf)	CN	Description									
	5,705	86	<50% Gras	s cover, Po	or, HSG C							
	12,809	74	>75% Gras	6 Grass cover, Good, HSG C								
	2,569	79	Woods/gras	nds/grass comb., Good, HSG D								
*	21,981	98	Impervious	rvious								
	43,064	88	Weighted A	ighted Average								
	21,083		48.96% Per	vious Area								
	21,981		51.04% lmp	pervious Are	ea							
		٥.										
	Tc Length	Slop		Capacity	Description							
(mi	n) (feet)	(ft/	ft) (ft/sec)	(cfs)								
10	.0				Direct Entry,	MIN. TC						

Subcatchment E-1D: EX. WATERSHED

1611-08-Existing Condtions

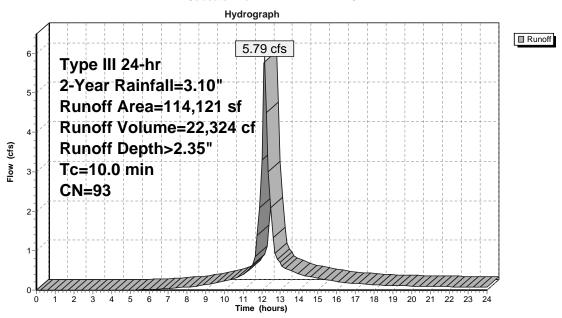
Type III 24-hr 2-Year Rainfall=3.10"

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Printed 7/19/2021

Page 12

Summary for Subcatchment E-1E: EX. WATERSHED


Runoff 5.79 cfs @ 12.14 hrs, Volume= 22,324 cf, Depth> 2.35"

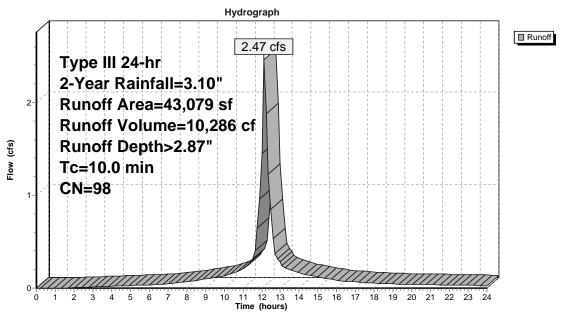
	Area (sf)	CN	Description
-	6,384	86	<50% Grass cover, Poor, HSG C
	17,883	74	>75% Grass cover, Good, HSG C
	15,843	96	Gravel surface, HSG C
*	74,011	98	Impervious
	114,121	93	Weighted Average
	40,110		35.15% Pervious Area
	74,011		64.85% Impervious Area
		۵.	
	Tc Length	Slop	
(r	min) (feet)	(ft/	fft) (ft/sec) (cfs)
1	10.0		Direct Entry, MIN. TC

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Page 13

Subcatchment E-1E: EX. WATERSHED

1611-08-Existing Condtions


Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 14

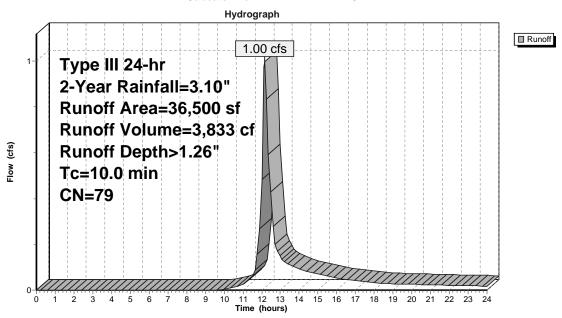
Summary for Subcatchment E-2A: EX. WATERSHED

Runoff = 2.47 cfs @ 12.14 hrs, Volume= 10,286 cf, Depth> 2.87"

Area (s	f) CN	Description			
1,48	3 86	<50% Gras	s cover, Po	r, HSG C	
* 41,59	6 98	Impervious			
43,07	9 98	Weighted A	verage		
1,48	3	3.44% Perv	ious Area		
41,59	6	96.56% Imp	pervious Ar	a	
Tc Leng (min) (fe			Capacity (cfs)	Description	
10.0				Direct Entry, MIN. TC	

Subcatchment E-2A: EX. WATERSHED

1611-08-Existing Condtions


Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 16

Summary for Subcatchment E-2B: EX. WATERSHED

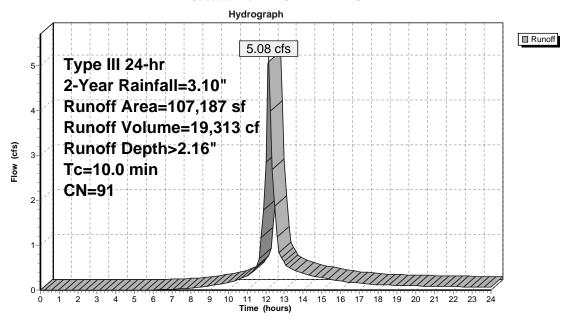
Runoff = 1.00 cfs @ 12.15 hrs, Volume= 3,833 cf, Depth> 1.26"

	Area (sf)	CN	Description	ı				
	1,043	86	<50% Gras	s cover, Po	or, HSG C			
	28,476	74	>75% Gras	s cover, Go	od, HSG C			
*	6,981	98	Impervious					
	36,500	79	Weighted A	verage				
	29,519		80.87% Pe	rvious Area				
	6,981		19.13% lm	pervious Are	ea			
	Tc Length				Description			
(r	min) (feet)	(ft/f	(ft/sec)	(cfs)				
	10.0				Direct Entry, M	N. TC		

Subcatchment E-2B: EX. WATERSHED

1611-08-Existing Condtions

Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 18


Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment E-2C: EX. WATERSHED

Runoff = 5.08 cfs @ 12.14 hrs, Volume= 19,313 cf, Depth> 2.16"

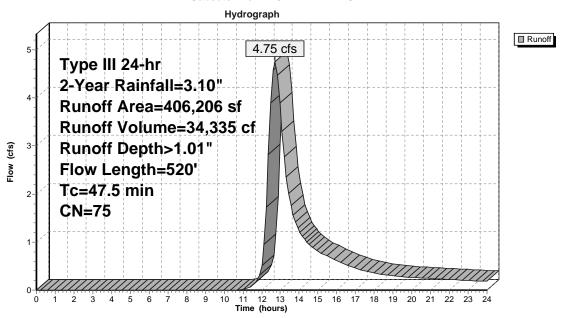
	Area (sf)	CN	Description			
	2,816	86	<50% Gras	s cover, Po	or, HSG C	
	31,699	74	>75% Gras	s cover, Go	od, HSG C	
*	72,672	98	Impervious			
	107,187	91	Weighted A	Average		
	34,515	;	32.20% Pe	rvious Area		
	72,672	!	67.80% lm	pervious Are	ea	
	Tc Lengt				Description	
_	(min) (fee	t) (ft/	t) (ft/sec)	(cfs)		
	10.0				Direct Entry, N	MIN. TC

Subcatchment E-2C: EX. WATERSHED

1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 20

Summary for Subcatchment E-3: EX. WATERSHED


Runoff = 4.75 cfs @ 12.70 hrs, Volume= 34,335 cf, Depth> 1.01"

	Α	rea (sf)	CN	Description			
	2	237,023	77	Woods, Go	od, HSG D		
*		9,386	98	Impervious			
	1	50,817	70	Woods, Go	od, HSG C		
		8,980	74	>75% Gras	s cover, Go	od, HSG C	
	4	106,206	75	Weighted A	verage		
	3	396,820		97.69% Pe	rvious Area		
		9,386		2.31% Impe	ervious Area	ì	
	Tc	Length	Slope	e Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
	28.3	100	0.0100	0.06		Sheet Flow, A-B	
						Woods: Light underbrush n= 0.400 I	P2= 3.20"
	1.3	40	0.0100	0.50		Shallow Concentrated Flow, B-C	
						Woodland Kv= 5.0 fps	
	17.9	380	0.0050	0.35		Shallow Concentrated Flow, C-D	
						Woodland Kv= 5.0 fps	
	47.5	520	Total				

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Page 21

Subcatchment E-3: EX. WATERSHED

1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 22

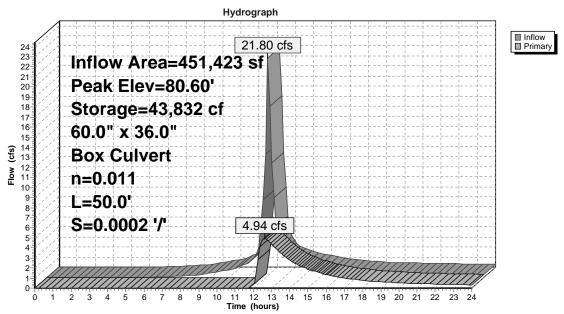
Summary for Pond ES: Offsite Swale to South Culvert

| Inflow Area = | 451,423 sf, 65.30% Impervious, Inflow Depth > 2.22" for 2-Year event | 1nflow = | 21.80 cfs @ 12.14 hrs, Volume= | 83,425 cf | 8,94 cfs @ 12.63 hrs, Volume= | 57,943 cf, Atten= 77%, Lag= 29.3 min | 21.63 hrs, Volume= | 57,943 cf | 57,943 cf | 12.63 hrs, Volume= | 57,943 cf | 12.63 hrs, Volume= | 57,943 cf | 12.63 hrs, Volume= | 12.63 hrs, Volume=

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 80.60' @ 12.63 hrs Surf.Area= 47,284 sf Storage= 43,832 cf

Plug-Flow detention time= 210.0 min calculated for 57,943 cf (69% of inflow) Center-of-Mass det. time= 117.8 min (920.7 - 802.9)

Volume	Invert	Avail	.Storage	Storage Description	١	
#1	79.00'	13	36,108 cf	Custom Stage Dat	a (Irregular)Listed	below (Recalc)
Elevation	Surf.	.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
79.00	17	7,000	1,200.0	0	0	17,000
80.00	27	7,000	4,000.0	21,808	21,808	1,175,651
81.00	63	3,900	4,200.0	44,146	65,954	1,306,222
82.00	76	5,600	4,250.0	70,154	136,108	1,340,108


Device Routing Invert Outlet Devices

#1 Primary 80.00' 60.0" W x 36.0" H Box Culvert L= 50.0' Box, headwa

60.0" W x 36.0" H Box Culvert L= 50.0' Box, headwall w/3 square edges, Ke= 0.500 Inlet / Outlet Invert= 80.00' / 79.99' S= 0.0002'/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 15.00 sf

Primary OutFlow Max=4.92 cfs @ 12.63 hrs HW=80.60' TW=0.00' (Dynamic Tailwater) 1=Culvert (Barrel Controls 4.92 cfs @ 2.19 fps)

Pond ES: Offsite Swale to South Culvert

1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 24

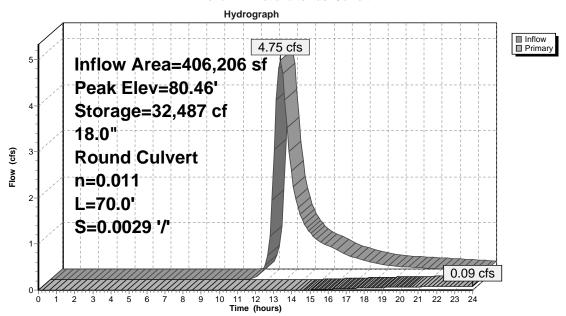
Summary for Pond EW: Wetland to East Culvert

2.31% Impervious, Inflow Depth > 1.01" for 2-Year event Inflow Area = 34,335 cf Inflow

4.75 cfs @ 12.70 hrs, Volume= 0.09 cfs @ 24.00 hrs, Volume= 1,828 cf, Atten= 98%, Lag= 677.7 min Outflow

1.828 cf Primary 0.09 cfs @ 24.00 hrs. Volume=

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 80.46' @ 24.00 hrs Surf.Area= 90,563 sf Storage= 32,487 cf


Plug-Flow detention time= 510.8 min calculated for 1,828 cf (5% of inflow) Center-of-Mass det. time= 342.9 min (1,235.2 - 892.2)

Volume #1	Invert 80.00'		Storage	Storage Description Custom Stage Dat		d below (Recalc)
Elevation (feet)	Surf	Area sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
80.00 81.00 82.00	149	2,000 9,000 8,000	1,200.0 2,600.0 4,300.0	0 96,341 194,094	0 96,341 290,435	52,000 475,356 1,408,807

Device Routing Invert Outlet Devices **18.0" Round Culvert** L= 70.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 80.30' / 80.10' S= 0.0029 '/' Cc= 0.900 Primary 80.30' n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.77 sf

Primary OutFlow Max=0.09 cfs @ 24.00 hrs HW=80.46' TW=0.00' (Dynamic Tailwater) -1=Culvert (Barrel Controls 0.09 cfs @ 1.31 fps)

Pond EW: Wetland to East Culvert

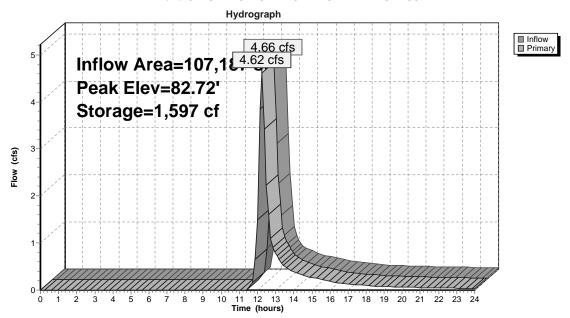
1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 26

Summary for Pond OFFSITE: OFFSITE PONDING AREA IN GRASS

| Inflow Area = | 107,187 sf, 67.80% Impervious, Inflow Depth > 1.71" | for 2-Year event | Inflow = 4.66 cfs @ 12.19 hrs, Volume= 15,286 cf | Outflow = 4.62 cfs @ 12.23 hrs, Volume= 15,085 cf, Atten= 1%, Lag= 2.2 min | Primary = 4.62 cfs @ 12.23 hrs, Volume= 15,085 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 82.72' @ 12.23 hrs Surf.Area= 4,908 sf Storage= 1,597 cf


Plug-Flow detention time= 19.3 min calculated for 15,010 cf (98% of inflow) Center-of-Mass det. time= 12.0 min (825.8 - 813.7)

Volume	Inv	ert Avail.S	torage Storage	Description		
#1	82.1	10' 3,	254 cf OFFSIT	E PONDING ARE	EA (Prismatic)Listed below (Re	ecalc)
Elevation (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
82. ⁻ 83.0		230 7,000	0 3,254	0 3,254		
Device	Routing	Inver	t Outlet Device	S		
#1	Primary	82.27				CPP, projecting, no headwall, Ke= 0.900
#2	Primary	82.60	n= 0.012 Cor 30.0' long x Head (feet) 0	rugated PP, smooth 10.0' breadth WE 0.20 0.40 0.60 0.	1.40' S= 0.0333 '/' Cc= 0.900 ioth interior, Flow Area= 0.28 s EIR FLOW OVER WALKING P 0.80 1.00 1.20 1.40 1.60 0 2.69 2.68 2.69 2.67 2.64	f

Primary OutFlow Max=4.52 cfs @ 12.23 hrs HW=82.72' TW=0.00' (Dynamic Tailwater)

1=(3) 8" HDPE (Inlet Controls 1.44 cfs @ 1.77 fps)
2=WEIR FLOW OVER WALKING PATH (Weir Controls 3.09 cfs @ 0.86 fps)

Pond OFFSITE: OFFSITE PONDING AREA IN GRASS

1611-08-Existing Condtions

Prepared by Microsoft
HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 28

Summary for Pond P-2A: Parking Lot/Driveway

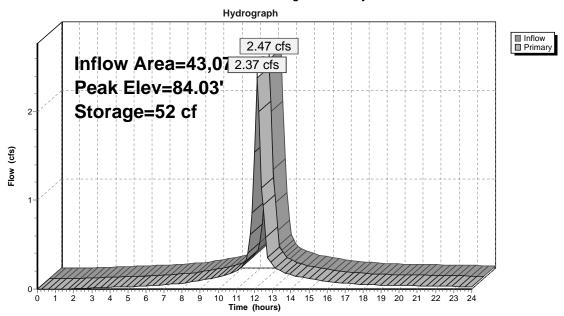
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 84.03' @ 12.14 hrs Surf.Area= 504 sf Storage= 52 cf

Plug-Flow detention time= 0.6 min calculated for 10,284 cf (100% of inflow) Center-of-Mass det. time= 0.5 min (760.6 - 760.2)

Volume	Invert	Avail.Storage	Storage Description
#1	82.38'	14 cf	4.00'D x 1.10'H Ex.CB
#2	83.45'	1,680 cf	Parking/Driveway (Prismatic)Listed below (Recalc)
		1 694 cf	Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
83.45	4	0	0
84.00	103	29	29
84.50	6,500	1,651	1,680

Device	Routing	Invert	Outlet Devices
#1	Primary	82.46'	6.0" Round 6"PVC w/ 1.0" inside fill L= 170.0' CPP, projecting, no headwall, Ke= 0.900
	•		Inlet / Outlet Invert= 82.38' / 81.00' S= 0.0081 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.17 sf
#2	Primary	84.00'	120.0' long x 50.0' breadth Weir Flow Over Curb Towards Lake
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.63


Primary OutFlow Max=2.28 cfs @ 12.14 hrs HW=84.03' TW=0.00' (Dynamic Tailwater) 1=6"PVC (Barrel Controls 0.68 cfs @ 3.88 fps)

²⁼Weir Flow Over Curb Towards Lake (Weir Controls 1.60 cfs @ 0.46 fps)

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Page 29

Pond P-2A: Parking Lot/Driveway

1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 30

Summary for Pond P-2C: EX. INFILTRTATION BASIN

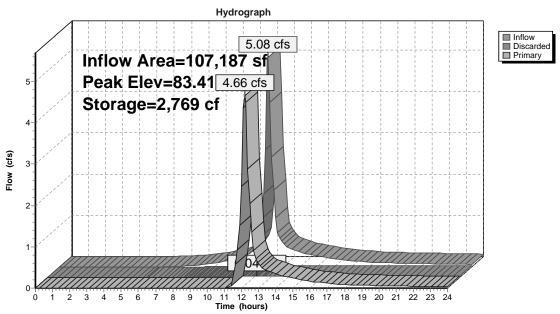
107,187 sf, 67.80% Impervious, Inflow Depth > 2.16" for 2-Year event 5.08 cfs @ 12.14 hrs, Volume= 19,313 cf 4.70 cfs @ 12.19 hrs, Volume= 0.04 cfs @ 12.19 hrs, Volume= 1,894 cf 4.66 cfs @ 12.19 hrs, Volume= 15,286 cf Inflow Area = Inflow 17,179 cf, Atten= 7%, Lag= 2.9 min Outflow Discarded =

Primary

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2Peak Elev= 83.41' @ 12.19 hrs Surf.Area= 6,622 sf Storage= 2,769 cf Flood Elev= 83.30' Surf.Area= 5,645 sf Storage= 2,114 cf

Plug-Flow detention time= 77.5 min calculated for 17,094 cf (89% of inflow) Center-of-Mass det. time= 27.3 min (833.9 - 806.7)

Volume	Invert	Avail.Sto	orage Storage	Description	
#1	82.50	8,3	08 cf EX. INF	ILTRATION BA	SIN (Prismatic)Listed below (Recalc)
Elevation (fee		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
82.5	50	430	0	0	
83.0	00	2,900	833	833	
84.0	00	12,050	7,475	8,308	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	83.30'	50.0' long x	60.0' breadth G	RASS/LAWN AREA
	•		Head (feet) 0	.20 0.40 0.60	0.80 1.00 1.20 1.40 1.60
			Coef. (English	n) 2.68 2.70 2.	70 2.64 2.63 2.64 2.64 2.63
#2	Discarded	82.50'	0.270 in/hr Ex	xfiltration over	Surface area

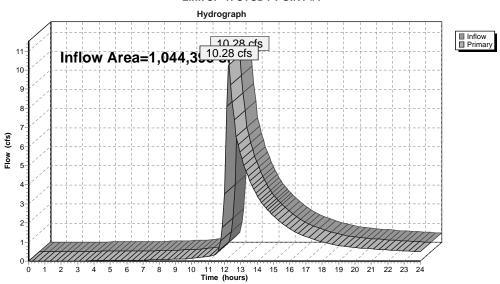

Discarded OutFlow Max=0.04 cfs @ 12.19 hrs HW=83.40' (Free Discharge) -2=Exfiltration (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=4.44 cfs @ 12.19 hrs HW=83.40' TW=82.71' (Dynamic Tailwater) 1=GRASS/LAWN AREA (Weir Controls 4.44 cfs @ 0.86 fps)

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Page 31

Pond P-2C: EX. INFILTRTATION BASIN


1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 32

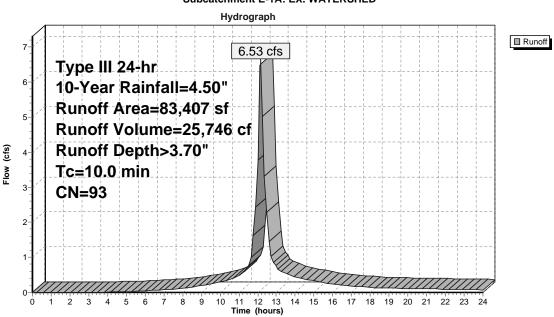
Summary for Link SP-1: STUDY POINT #1

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt=0.12 hrs

Link SP-1: STUDY POINT #1

Summary for Subcatchment E-1A: EX. WATERSHED

Runoff = 6.53 cfs @ 12.14 hrs, Volume= 25,746 cf, Depth> 3.70"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Area (sf) CN	Description	escription							
	6,343	3 86	<50% Gras	ss cover, Po	or, HSG C						
	8,692	2 74	>75% Gras	>75% Grass cover, Good, HSG C							
	5,28	5 79	Woods/gra	ss comb., G	ood, HSG D						
*	63,087	7 98	Impervious	pervious							
	83,40	7 93	Weighted A	Average							
	20,320)	24.36% Pe	24.36% Pervious Area							
	63,08	7	75.64% lm	pervious Are	ea						
	Tc Leng		,		Description						
(n	nin) (fee	et) (ft.	ft) (ft/sec)	(cfs)							
1	0.0				Direct Entry, M	IN. TC					

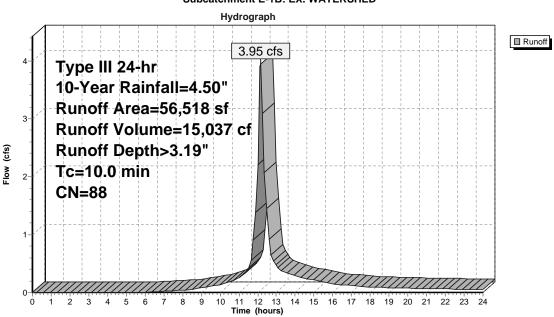
1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 34

Subcatchment E-1A: EX. WATERSHED

Summary for Subcatchment E-1B: EX. WATERSHED

Runoff = 3.95 cfs @ 12.14 hrs, Volume= 15,037 cf, Depth> 3.19"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Α	rea (sf)	CN	Description	ı						
		3,722	86	<50% Gras	s cover, Po	HSG C					
		8,826	74	>75% Gras	-75% Grass cover, Good, HSG C						
		14,964	79	Woods/gra	ss comb., G	d, HSG D					
*		29,006	98	Impervious	pervious						
		56,518	88	Weighted A	verage						
		27,512		48.68% Pe	rvious Area						
		29,006		51.32% lm	pervious Are						
	Tc	Length	Slop	,	1	escription					
1)	min)	(feet)	(ft/f	(ft/sec)	(cfs)						
	10.0					irect Entry, MIN. TC					

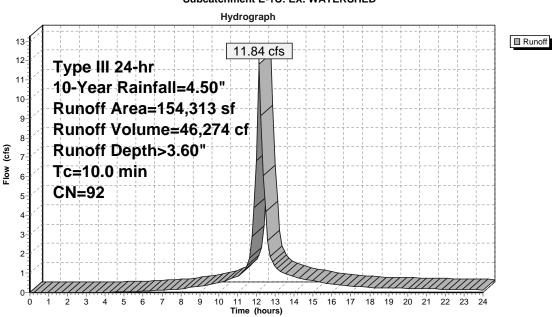
1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 36

Subcatchment E-1B: EX. WATERSHED

Summary for Subcatchment E-1C: EX. WATERSHED

Runoff = 11.84 cfs @ 12.14 hrs, Volume= 46,274 cf, Depth> 3.60"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Area (sf)	CN	scription					
	3,840	86	<50% Grass cover, Poor, HSG C					
	20,360	74	>75% Grass cover, Good, HSG C					
	23,421	79	Woods/grass comb., Good, HSG D					
*	106,692	98	npervious					
	154,313	92	Weighted Average					
	47,621		30.86% Pervious Area					
	106,692		69.14% Impervious Area					
	Tc Length	Slop	e Velocity Capacity Description					
_	(min) (feet)	(ft/	t) (ft/sec) (cfs)	_				
	10.0		Direct Entry, MIN. TC					

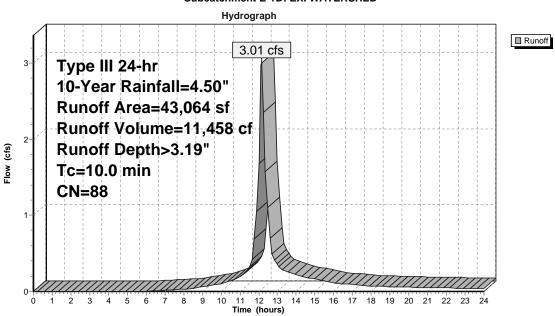
1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 38

Subcatchment E-1C: EX. WATERSHED

Summary for Subcatchment E-1D: EX. WATERSHED

Runoff = 3.01 cfs @ 12.14 hrs, Volume= 11,458 cf, Depth> 3.19"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Area (sf)	CN	Description	ı		
	5,705	86	<50% Gras	s cover, Po	HSG C	
	12,809	74	>75% Gras	s cover, Go	, HSG C	
	2,569	79	Woods/gra	ss comb., G	d, HSG D	
*	21,981	98	Impervious			
	43,064	88	Weighted A	verage		
	21,083		48.96% Pe	rvious Area		
	21,981		51.04% Im	pervious Are		
_		01				
	Tc Length	Slop			escription	
(mi	n) (feet)	(ft/f) (ft/sec)	(cfs)		
10	.0				irect Entry, MIN. TC	

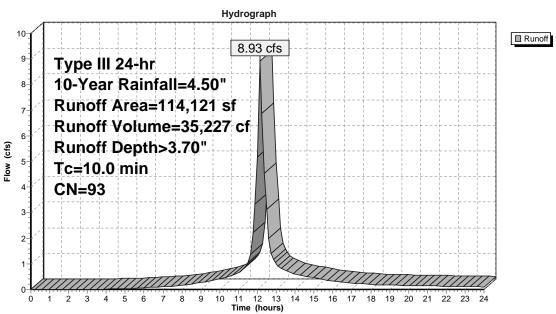
1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 40

Subcatchment E-1D: EX. WATERSHED

Summary for Subcatchment E-1E: EX. WATERSHED

Runoff = 8.93 cfs @ 12.14 hrs, Volume= 35,227 cf, Depth> 3.70"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Area (sf)	CN	Description					
	6,384	86	iss cover, Poor, HSG C					
	17,883	74	>75% Grass cover, Good, HSG C					
	15,843	96	Gravel surface, HSG C					
*	74,011	Impervious	_					
	114,121	93	Weighted Average					
	40,110		35.15% Pervious Area					
	74,011		64.85% Impervious Area					
	Tc Length	Slop						
(min) (feet)	(ft/	ft) (ft/sec) (cfs)	_				
	10.0		Direct Entry, MIN. TC					

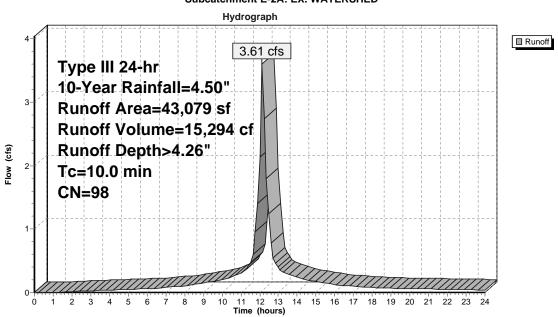
1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 42

Subcatchment E-1E: EX. WATERSHED

Summary for Subcatchment E-2A: EX. WATERSHED

Runoff = 3.61 cfs @ 12.14 hrs, Volume= 15,294 cf, Depth> 4.26"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

_		Area (sf)	CN	Description						
		1,483	86	<50% Grass cover, Poor, HSG C						
1	*	41,596	98	Impervious						
		43,079	98	Weighted Average						
		1,483		3.44% Pervious Area						
		41,596		96.56% Imp	pervious Ar	ea				
	_		01		0	D	_			
	T		Slop			Description	n			
	(min) (feet)	(ft/f	(ft/sec)	(cfs)					
	10 ()				Direct Entry	try, MIN, TC			

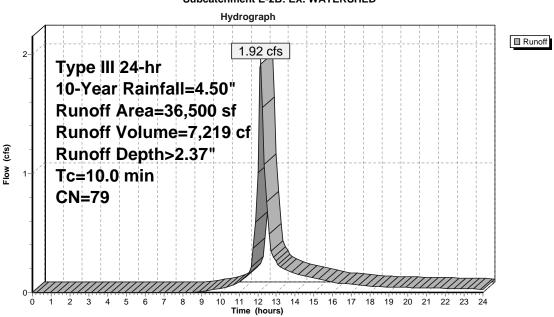
1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 44

Subcatchment E-2A: EX. WATERSHED

Summary for Subcatchment E-2B: EX. WATERSHED

Runoff = 1.92 cfs @ 12.15 hrs, Volume= 7,219 cf, Depth> 2.37"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Area (sf)	CN	Description		
	1,043	86	<50% Gras	s cover, Po	oor, HSG C
	28,476	74	>75% Gras	0% Grass cover, Po 5% Grass cover, Go pervious eighted Average 87% Pervious Area 13% Impervious Ar	ood, HSG C
*	6,981	98	Impervious		
	36,500	79	Weighted A	verage	
	29,519		80.87% Pe	rvious Area	
	6,981		19.13% lm	pervious Ar	ea
(n	Tc Length	Slop (ft/t			Description
1	0.0				Direct Entry, MIN. TC

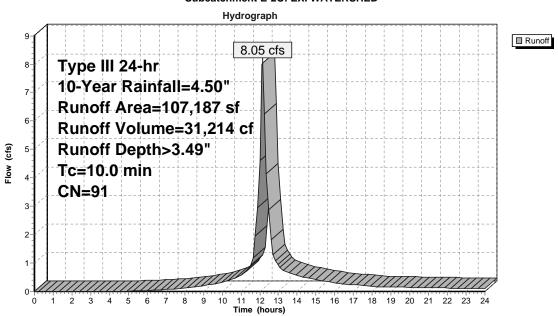
1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 46

Subcatchment E-2B: EX. WATERSHED

Summary for Subcatchment E-2C: EX. WATERSHED

Runoff = 8.05 cfs @ 12.14 hrs, Volume= 31,214 cf, Depth> 3.49"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

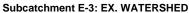
	Area (st) CN	Description	1				
	2,81	86	<50% Gras	s cover, Po	or, HSG C			
	31,69	9 74	>75% Gras	s cover, Go	od, HSG C			
4	72,67	2 98	Impervious					
	107,18	7 91	Weighted A	Average				
	34,51	5	32.20% Pe	rvious Area				
	72,67	2	67.80% lm	pervious Are	ea			
	Tc Leng	th Slo _l	e Velocity	Capacity	Description			
_	(min) (fee	et) (ft/	t) (ft/sec)	(cfs)				
	10.0				Direct Entry.	MIN. TC		

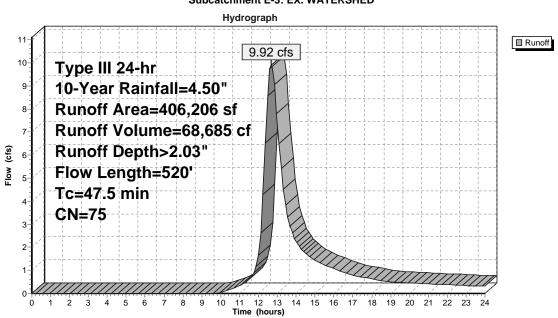
1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 48

Subcatchment E-2C: EX. WATERSHED

Summary for Subcatchment E-3: EX. WATERSHED


Runoff = 9.92 cfs @ 12.67 hrs, Volume= 68,685 cf, Depth> 2.03"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

_	Α	rea (sf)	CN	Description		
	2	237,023	77	Woods, Go	od, HSG D	
*		9,386	98	Impervious		
	1	50,817	70	Woods, Go	od, HSG C	
_		8,980	74	>75% Gras	s cover, Go	od, HSG C
	4	06,206	75	Weighted A	verage	
	3	96,820		97.69% Pe	rvious Area	
	9,386 2.31% Impervious Are				ervious Area	a
				-		
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)	
	28.3	100	0.0100	0.06		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.20"
	1.3	40	0.0100	0.50		Shallow Concentrated Flow, B-C
						Woodland Kv= 5.0 fps
	17.9	380	0.0050	0.35		Shallow Concentrated Flow, C-D
_						Woodland Kv= 5.0 fps
	47.5	520	Total			

1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 50

Summary for Pond ES: Offsite Swale to South Culvert

451,423 sf, 65.30% Impervious, Inflow Depth > 3.56" for 10-Year event Inflow Area =

Inflow 34.25 cfs @ 12.14 hrs, Volume= 133,744 cf

Outflow 10.77 cfs @ 12.52 hrs, Volume= 107,368 cf, Atten= 69%, Lag= 23.0 min

Primary 10.77 cfs @ 12.52 hrs, Volume= 107,368 cf

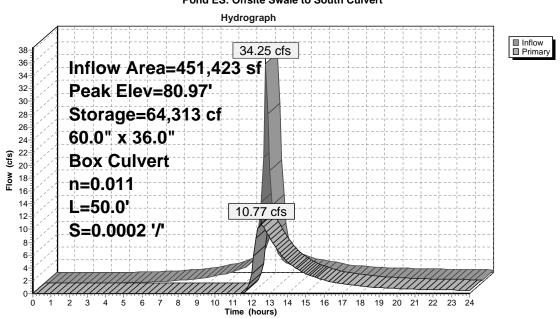
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 80.97' @ 12.52 hrs Surf.Area= 62,747 sf Storage= 64,313 cf

Plug-Flow detention time= 172.8 min calculated for 107,368 cf (80% of inflow)

Center-of-Mass det. time= 99.5 min (889.6 - 790.1)

Volume	Inve	ert Ava	ail.Storage	Storage Descriptio	n			
#1	79.0	00'	136,108 cf	Custom Stage Da	ta (Irregular) Liste	d below (Recalc)		
Elevatio		Surf.Area (sq-ft)		Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
79.0	00	17,000	1,200.0	0	0	17,000		
80.0	00	27,000	4,000.0	21,808	21,808	1,175,651		
81.0	00	63,900	4,200.0	44,146	65,954	1,306,222		
82.0	00	76,600	4,250.0	70,154	136,108	1,340,108		
Device	Routing	I	nvert Outl	et Devices				
#1	Primary	8	0.00' 60.0	" W x 36.0" H Box	Culvert L= 50.0'	Box, headwall w	/3 square edges, Ke= 0.500	

60.0" W x 36.0" H Box Culvert L= 50.0' Box, headwall w/3 square edges, Ke= 0.500 Inlet / Outlet Invert= 80.00' / 79.99' S= 0.0002 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 15.00 sf


Primary OutFlow Max=10.70 cfs @ 12.52 hrs HW=80.97' TW=0.00' (Dynamic Tailwater) -1=Culvert (Barrel Controls 10.70 cfs @ 2.94 fps)

1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 52

Pond ES: Offsite Swale to South Culvert

Summary for Pond EW: Wetland to East Culvert

406,206 sf, 2.31% Impervious, Inflow Depth > 2.03" for 10-Year event Inflow Area =

Inflow 68,685 cf

9.92 cfs @ 12.67 hrs, Volume= 0.48 cfs @ 19.58 hrs, Volume= Outflow 16,473 cf, Atten= 95%, Lag= 414.6 min

Primary 0.48 cfs @ 19.58 hrs, Volume= 16,473 cf

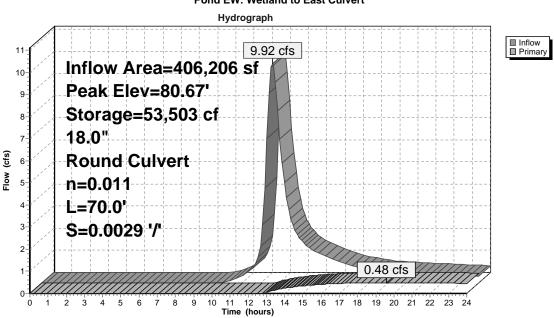
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2Peak Elev= 80.67' @ 19.58 hrs Surf.Area= 111,464 sf Storage= 53,503 cf

Plug-Flow detention time= 412.7 min calculated for 16,473 cf (24% of inflow)

Center-of-Mass det. time= 273.5 min (1,145.8 - 872.3)

Volume	Invert	. Avai	l.Storage	Storage Description			
#1	80.00'	29	90,435 cf	Custom Stage Data	a (Irregular)Listed	below (Recalc)	
Elevation (feet)	S	urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
80.00 81.00 82.00		52,000 149,000 243,000	1,200.0 2,600.0 4,300.0	0 96,341 194,094	0 96,341 290,435	52,000 475,356 1,408,807	
Device R	outing			et Devices			

80.30' **18.0" Round Culvert** L= 70.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 80.30' / 80.10' S= 0.0029 '/ Cc= 0.900 Primary n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.77 sf


Primary OutFlow Max=0.48 cfs @ 19.58 hrs HW=80.67' TW=0.00' (Dynamic Tailwater) -1=Culvert (Barrel Controls 0.48 cfs @ 2.13 fps)

1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 54

Pond EW: Wetland to East Culvert

1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Page 55

Summary for Pond OFFSITE: OFFSITE PONDING AREA IN GRASS

107,187 sf, 67.80% Impervious, Inflow Depth > 3.02" for 10-Year event Inflow Area = 7.44 cfs @ 12.18 hrs, Volume= 7.40 cfs @ 12.22 hrs, Volume= Inflow 26,967 cf Outflow 26,727 cf, Atten= 1%, Lag= 2.5 min

Primary 7.40 cfs @ 12.22 hrs, Volume= 26,727 cf

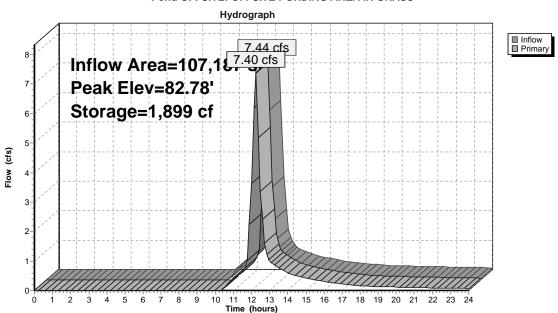
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 82.78° @ 12.22 hrs Surf.Area= 5,350 sf Storage= 1,899 cf

Plug-Flow detention time= 15.7 min calculated for 26,727 cf (99% of inflow)

Center-of-Mass det. time= 10.3 min (815.4 - 805.0)

Volume	Inve	ert Avail.Sto	orage Storage	Description	
#1	82.1	0' 3,2	54 cf OFFSIT	E PONDING ARE	EA (Prismatic)Listed below (Recalc)
Elevation (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
82.1 83.0		230 7,000	0 3,254	0 3,254	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	82.27'			00 w/ 2.0" inside fill L= 21.0' CPP, projecting, no headwall, Ke= 0.900
#2	Primary	82.60'	n= 0.012 Cor 30.0' long x Head (feet) 0	rugated PP, smo 10.0' breadth WE 0.20 0.40 0.60 0	.40' S= 0.0333 '/' Cc= 0.900 oth interior, Flow Area= 0.28 sf EIR FLOW OVER WALKING PATH .80 1.00 1.20 1.40 1.60 0 2.69 2.68 2.69 2.67 2.64

Primary OutFlow Max=7.19 cfs @ 12.22 hrs HW=82.78' TW=0.00' (Dynamic Tailwater)


1=(3) 8" HDPE (Inlet Controls 1.65 cfs @ 1.96 fps)
2=WEIR FLOW OVER WALKING PATH (Weir Controls 5.53 cfs @ 1.05 fps)

1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 56

Pond OFFSITE: OFFSITE PONDING AREA IN GRASS

Summary for Pond P-2A: Parking Lot/Driveway

43,079 sf, 96.56% Impervious, Inflow Depth > 4.26" for 10-Year event Inflow Area =

3.61 cfs @ 12.14 hrs, Volume= 3.69 cfs @ 12.14 hrs, Volume= Inflow

Outflow 15,292 cf, Atten= 0%, Lag= 0.0 min

Primary 3.69 cfs @ 12.14 hrs, Volume= 15,292 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 84.04 $\,^\circ$ 12.14 hrs $\,^\circ$ Surf.Area= 684 sf $\,^\circ$ Storage= 60 cf

Plug-Flow detention time= 0.5 min calculated for 15,216 cf (99% of inflow)

Center-of-Mass det. time= 0.4 min (753.3 - 752.9)

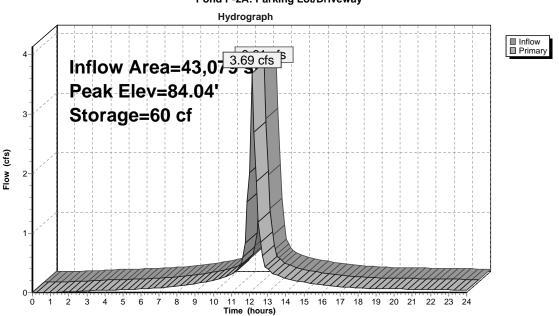
Volume	Invert	Avail.Storage	Storage Description
#1	82.38'	14 cf	4.00'D x 1.10'H Ex.CB
#2	83.45'	1,680 cf	Parking/Driveway (Prismatic)Listed below (Recalc)
		1,694 cf	Total Available Storage

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
83.45	4	0	0
84.00	103	29	29
84.50	6,500	1,651	1,680

Device	Routing	Invert	Outlet Devices
#1	Primary	82.46'	6.0" Round 6"PVC w/ 1.0" inside fill L= 170.0' CPP, projecting, no headwall, Ke= 0.900
	-		Inlet / Outlet Invert= 82.38' / 81.00' S= 0.0081 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.17 sf
#2	Primary	84.00'	120.0' long x 50.0' breadth Weir Flow Over Curb Towards Lake
	•		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.63

Primary OutFlow Max=3.53 cfs @ 12.14 hrs HW=84.04' TW=0.00' (Dynamic Tailwater)

-1=6"PVC (Barrel Controls 0.68 cfs @ 3.89 fps)


2=Weir Flow Over Curb Towards Lake (Weir Controls 2.85 cfs @ 0.55 fps)

1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 58

Pond P-2A: Parking Lot/Driveway

Summary for Pond P-2C: EX. INFILTRTATION BASIN

107,187 sf, 67.80% Impervious, Inflow Depth > 3.49" for 10-Year event Inflow Area = 8.05 cfs @ 12.14 hrs, Volume= 7.48 cfs @ 12.18 hrs, Volume= Inflow 31,214 cf Inflow = Outflow =

29,067 cf, Atten= 7%, Lag= 2.4 min Discarded =

0.04 cfs @ 12.18 hrs, Volume= 7.44 cfs @ 12.18 hrs, Volume= 2,100 cf Primary = 26.967 cf

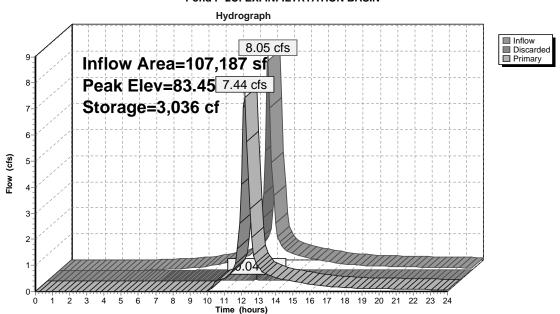
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 83.45° @ 12.18 hrs Surf.Area= 6,981 sf Storage= 3,036 cf Flood Elev= 83.30° Surf.Area= 5,645 sf Storage= 2,114 cf

Plug-Flow detention time= 58.6 min calculated for 29,067 cf (93% of inflow) Center-of-Mass det. time= 22.3 min (815.7 - 793.4)

Volume	Inve	rt Avail.Sto	orage Storage	Description	
#1	82.5	0' 8,3	08 cf EX. INF	ILTRATION BAS	SIN (Prismatic)Listed below (Recalc)
Elevation (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
82.5 83.0 84.0	00	430 2,900 12,050	0 833 7,475	833 8,308	
Device	Routing	Invert	Outlet Devices	S	
#1	Primary	83.30'	Head (feet) 0	.20 0.40 0.60 (RASS/LAWN AREA 0.80 1.00 1.20 1.40 1.60 70 2.64 2.63 2.64 2.64 2.63
#2	Discarded	d 82.50'	0.270 in/hr E	xfiltration over \$	Surface area

Discarded OutFlow Max=0.04 cfs @ 12.18 hrs HW=83.44' (Free Discharge)

-2=Exfiltration (Exfiltration Controls 0.04 cfs)


Primary OutFlow Max=7.07 cfs @ 12.18 hrs HW=83.44' TW=82.77' (Dynamic Tailwater) 1=GRASS/LAWN AREA (Weir Controls 7.07 cfs @ 1.01 fps)

1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 60

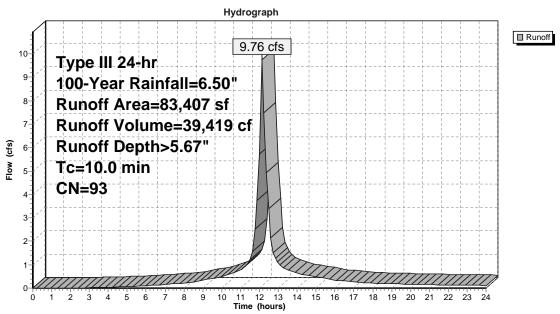

Pond P-2C: EX. INFILTRTATION BASIN

Summary for Link SP-1: STUDY POINT #1

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs

Link SP-1: STUDY POINT #1

1611-08-Existing Condtions


Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 62

Summary for Subcatchment E-1A: EX. WATERSHED

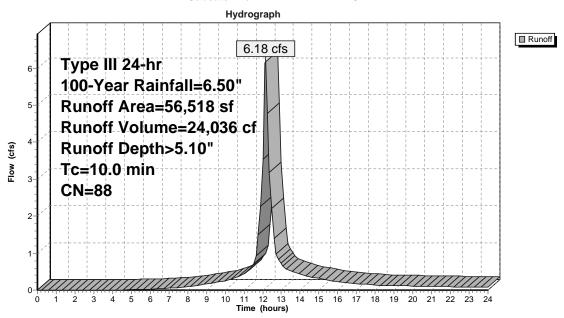
Runoff = 9.76 cfs @ 12.14 hrs, Volume= 39,419 cf, Depth> 5.67"

	Area (sf)	CN	Description	
· <u> </u>	6,343	86	<50% Grass cover	Poor, HSG C
	8,692	74	>75% Grass cover	Good, HSG C
	5,285	79	Woods/grass comb	., Good, HSG D
*	63,087	98	Impervious	
	83,407	93	Weighted Average	
	20,320		24.36% Pervious A	rea
	63,087		75.64% Impervious	Area
	Tc Length	Slop	e Velocity Capac	ity Description
(m	in) (feet)	(ft/	t) (ft/sec) (c	rs)
10	0.0			Direct Entry, MIN. TC

Subcatchment E-1A: EX. WATERSHED

1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 64


Summary for Subcatchment E-1B: EX. WATERSHED

Runoff = 6.18 cfs @ 12.14 hrs, Volume= 24,036 cf, Depth> 5.10"

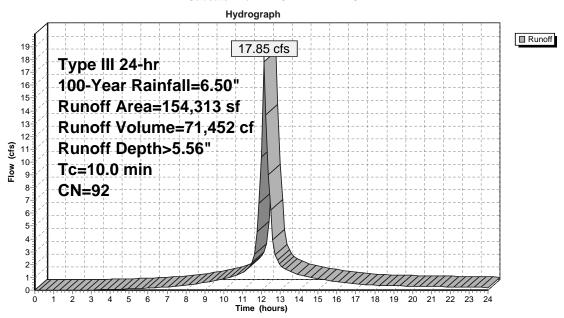
	Area (st)	CN	Description						
	3,722	86	<50% Gras	s cover, Po	or, HSG C				
	8,826	74	>75% Gras	s cover, Go	od, HSG C				
	14,964	79	Woods/gra	ss comb., G	lood, HSG D				
*	29,006	98	Impervious						
	56,518	88	Weighted A	Average					
	27,512		48.68% Pe	rvious Area					
	29,006		51.32% lm	pervious Ar	ea				
	c Length	Slop	e Velocity	Capacity	Description				
(mir	n) (feet)	(ft/1	t) (ft/sec)	(cfs)					
10.	.0				Direct Entry.	. MIN. TC			

Page 65

Subcatchment E-1B: EX. WATERSHED

1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 66


Summary for Subcatchment E-1C: EX. WATERSHED

Runoff = 17.85 cfs @ 12.14 hrs, Volume= 71,452 cf, Depth> 5.56"

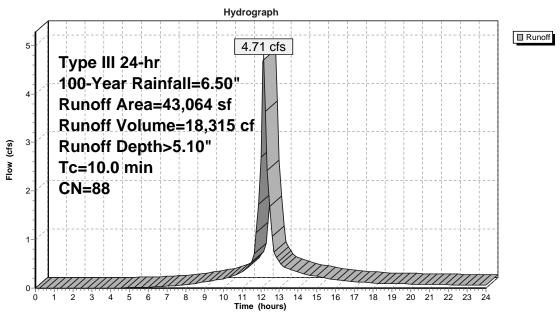
	Area	a (st)	CN	Description						
	3	3,840	86	<50% Gras	s cover, Po	or, HSG C				
	20	,360	74	>75% Gras	s cover, Go	od, HSG C				
	23	3,421	79	Woods/gra	ss comb., G	ood, HSG D				
*	106	6,692	98	Impervious						
	154	,313	92	Weighted A	verage					
	47	,621		30.86% Pe	rvious Area					
	106	6,692		69.14% lm _l	pervious Are	ea				
		ength	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry.	MIN. TC			

Page 67

Subcatchment E-1C: EX. WATERSHED

1611-08-Existing Condtions

Prepared by Microsoft
HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC


Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 68

Summary for Subcatchment E-1D: EX. WATERSHED

Runoff = 4.71 cfs @ 12.14 hrs, Volume= 18,315 cf, Depth> 5.10"

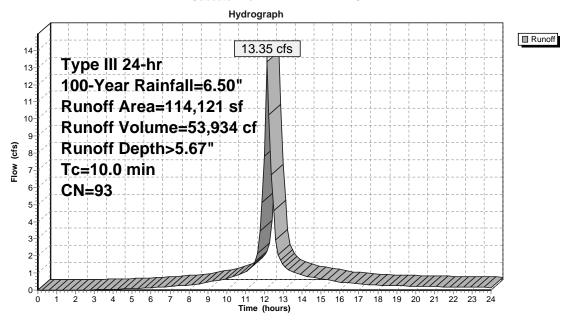
	Area (sf)	CN	Description						
	5,705	86	<50% Gras	s cover, Po	or, HSG C				
	12,809	74	>75% Gras	s cover, Go	od, HSG C				
	2,569	79	Woods/gras	ss comb., G	ood, HSG D				
*	21,981	98	Impervious						
	43,064	88	Weighted A	verage					
	21,083		48.96% Per	vious Area					
	21,981		51.04% lmp	pervious Are	ea				
		٥.							
	Tc Length	Slop		Capacity	Description				
(mi	n) (feet)	(ft/	ft) (ft/sec)	(cfs)					
10	.0				Direct Entry,	MIN. TC			

Subcatchment E-1D: EX. WATERSHED

1611-08-Existing Condtions

Prepared by Microsoft
HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 70


Summary for Subcatchment E-1E: EX. WATERSHED

Runoff = 13.35 cfs @ 12.14 hrs, Volume= 53,934 cf, Depth> 5.67"

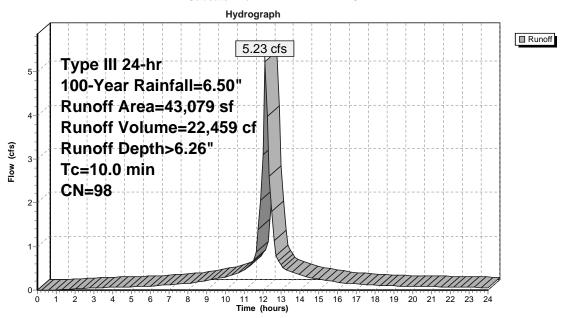
_	Area (st) C	:N D	escription			
	6,3	84 8	36 <	50% Gras	s cover, Po	or, HSG C	
	17,8	83 7	74 >	75% Grass	s cover, Go	od, HSG C	
	15,8	43 9	96 G	ravel surfa	ace, HSG C	;	
4	74,0	11 9	98 Ir	npervious			
	114,1	21 9	93 W	Veighted A	verage		
	40,1	10	3	5.15% Per	rvious Area		
	74,0	11	6	4.85% Imp	pervious Are	ea	
		J .	Slope	Velocity	Capacity	Description	
_	(min) (fe	eet)	(ft/ft)	(ft/sec)	(cfs)		
	10.0					Direct Entry.	, MIN. TC

Page 71

Subcatchment E-1E: EX. WATERSHED

1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC


Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 72

Summary for Subcatchment E-2A: EX. WATERSHED

Runoff 5.23 cfs @ 12.14 hrs, Volume= 22,459 cf, Depth> 6.26"

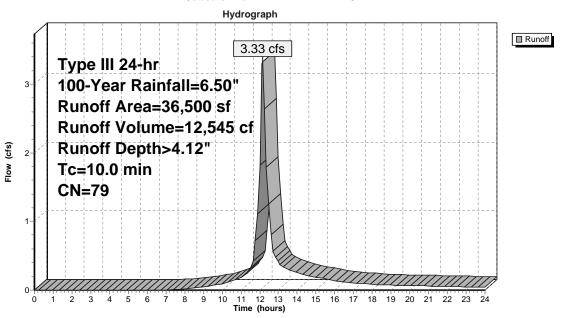
Area (s	f) CN	Description			
1,48	3 86	<50% Gras	s cover, Po	r, HSG C	
* 41,59	6 98	Impervious			
43,07	9 98	Weighted A	verage		
1,48	3	3.44% Perv	ious Area		
41,59	6	96.56% Imp	pervious Ar	a	
Tc Leng (min) (fe		Slope Velocity Capacity (ft/ft) (ft/sec) (cfs)		Description	
10.0				Direct Entry, MIN. TC	

Subcatchment E-2A: EX. WATERSHED

1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 74

Summary for Subcatchment E-2B: EX. WATERSHED


Runoff = 3.33 cfs @ 12.14 hrs, Volume= 12,545 cf, Depth> 4.12"

	Area (sf)	CN	Description	ı				
	1,043	86	<50% Gras	s cover, Po	or, HSG C			
	28,476	74	>75% Gras	s cover, Go	od, HSG C			
*	6,981	98	Impervious					
	36,500	79	Weighted A	verage				
	29,519		80.87% Pe	rvious Area				
	6,981		19.13% lm	pervious Are	ea			
	Tc Length				Description			
(r	min) (feet)	(ft/f	(ft/sec)	(cfs)				
	10.0				Direct Entry, M	N. TC		

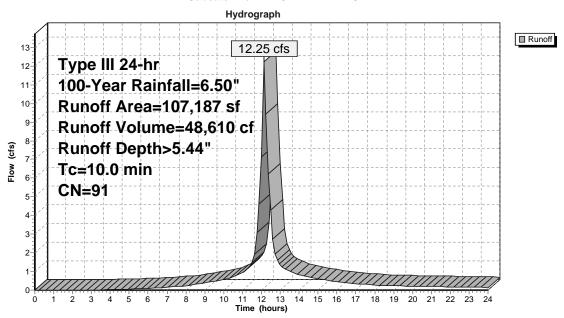
Page 75

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Subcatchment E-2B: EX. WATERSHED

1611-08-Existing Condtions

Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 76


Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment E-2C: EX. WATERSHED

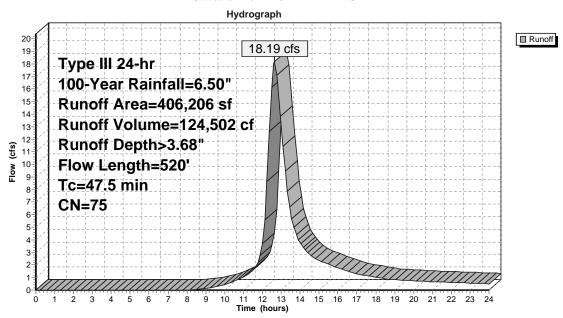
Runoff 12.25 cfs @ 12.14 hrs, Volume= 48,610 cf, Depth> 5.44"

	Area (sf)	CN	Description						
	2,816	86	<50% Gras	s cover, Po	or, HSG C				
	31,699	74	>75% Gras	s cover, Go	od, HSG C				
*	72,672	98	Impervious						
	107,187	91	Weighted A	verage					
	34,515		32.20% Pe	rvious Area					
	72,672		67.80% lm	pervious Are	ea				
	-	01			5				
	Tc Length	Slop			Description				
(n	nin) (feet)	(ft/f	t) (ft/sec)	(cfs)					
1	0.0				Direct Entry, M	IN. TC			

Subcatchment E-2C: EX. WATERSHED

1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 78


Summary for Subcatchment E-3: EX. WATERSHED

Runoff = 18.19 cfs @ 12.65 hrs, Volume= 124,502 cf, Depth> 3.68"

	Α	rea (sf)	CN	Description			
	2	237,023	77	Woods, Go	od, HSG D		
*		9,386	98	Impervious			
	1	50,817	70	Woods, Go	od, HSG C		
		8,980	74	>75% Gras	s cover, Go	od, HSG C	
	4	06,206	75	Weighted A	verage		
	3	96,820		97.69% Per	rvious Area		
		9,386		2.31% Impe	ervious Area	ì	
				•			
	Tc	Length	Slope	e Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	•	
	28.3	100	0.0100	0.06		Sheet Flow, A-B	
						Woods: Light underbrush n= 0.400	P2= 3.20"
	1.3	40	0.0100	0.50		Shallow Concentrated Flow, B-C	
						Woodland Kv= 5.0 fps	
	17.9	380	0.0050	0.35		Shallow Concentrated Flow, C-D	
						Woodland Kv= 5.0 fps	
	47.5	520	Total			·	

Printed 7/19/2021 Page 79

Subcatchment E-3: EX. WATERSHED

1611-08-Existing Condtions

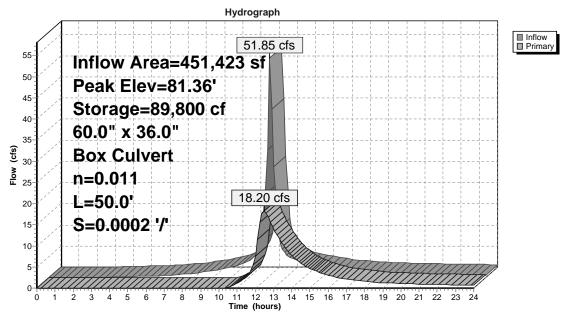
Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 80

Summary for Pond ES: Offsite Swale to South Culvert

 Inflow Area = Inflow = Outflow = Primary = 18.20 cfs @ 12.49 hrs, Volume= 18.20 cfs @ 12.49 hrs, Volume= 179,675 cf, Atten= 65%, Lag= 21.1 min
 451,423 sf, 65.30% Impervious, Inflow Depth > 5.51" for 100-Year event 207,156 cf

 Outflow = 18.20 cfs @ 12.49 hrs, Volume= 179,675 cf, Atten= 65%, Lag= 21.1 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 81.36' @ 12.49 hrs Surf.Area= 68,348 sf Storage= 89,800 cf


Plug-Flow detention time= 148.0 min calculated for 179,675 cf (87% of inflow) Center-of-Mass det. time= 90.3 min (869.2 - 778.9)

Volume	Invert	Avail	l.Storage	Storage Description	1	
#1	79.00'	13	36,108 cf	Custom Stage Dat	a (Irregular)Listed	below (Recalc)
Elevation	Surf	.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
79.00	17	7,000	1,200.0	0	0	17,000
80.00	2	7,000	4,000.0	21,808	21,808	1,175,651
81.00	63	3,900	4,200.0	44,146	65,954	1,306,222
82.00	76	6,600	4,250.0	70,154	136,108	1,340,108

DeviceRoutingInvertOutlet Devices#1Primary80.00'60.0" W x 36.0" H Box Culvert L= 50.0' Box, headwall w/3 square edges, Ke= 0.500 Inlet / Outlet Invert= 80.00' / 79.99' S= 0.0002 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 15.00 sf

Primary OutFlow Max=18.17 cfs @ 12.49 hrs HW=81.36' TW=0.00' (Dynamic Tailwater) 1=Culvert (Barrel Controls 18.17 cfs @ 3.57 fps)

Pond ES: Offsite Swale to South Culvert

1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 82

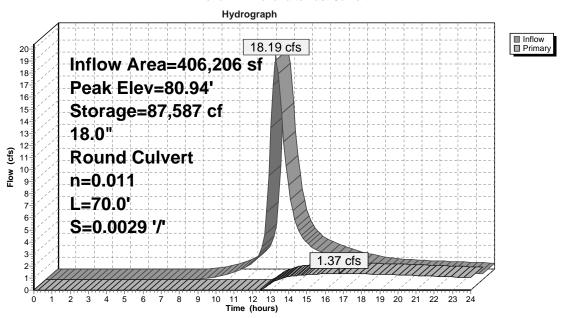
Summary for Pond EW: Wetland to East Culvert

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 80.94' @ 16.77 hrs Surf.Area= 141,746 sf Storage= 87,587 cf

Plug-Flow detention time= 373.6 min calculated for 48,919 cf (39% of inflow) Center-of-Mass det. time= 251.2 min (1,106.9 - 855.7)

Volume	Invert	Avail.	.Storage	Storage Description		
#1	80.00'	29	0,435 cf	Custom Stage Data	a (Irregular)Liste	d below (Recalc)
Elevation (feet)	Surf	Area sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
80.00 81.00 82.00	149	2,000 0,000 3,000	1,200.0 2,600.0 4,300.0	0 96,341 194,094	0 96,341 290,435	52,000 475,356 1,408,807

DeviceRoutingInvertOutlet Devices#1Primary80.30'18.0" Round Culvert L= 70.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 80.30' / 80.10' S= 0.0029 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.77 sf


Primary OutFlow Max=1.37 cfs @ 16.77 hrs HW=80.94' TW=0.00' (Dynamic Tailwater) 1=Culvert (Barrel Controls 1.37 cfs @ 2.82 fps)

1611-08-Existing Condtions

Prepared by Microsoft

HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Pond EW: Wetland to East Culvert

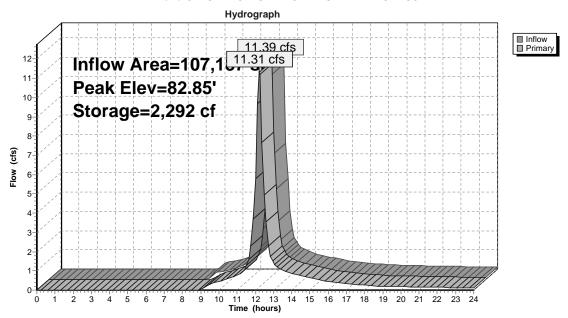
1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 84

Summary for Pond OFFSITE: OFFSITE PONDING AREA IN GRASS

Inflow Area = Inflow Outflow 11.31 cfs @ 12.22 hrs, Volume= Primary 43.845 cf


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 82.85' @ 12.21 hrs Surf.Area= 5,876 sf Storage= 2,292 cf

Plug-Flow detention time= 13.2 min calculated for 43,845 cf (99% of inflow) Center-of-Mass det. time= 9.2 min (803.5 - 794.4)

Volume	Inv	ert Avail.	Storage	Storage	Description	
#1	82.	10'	3,254 cf	OFFSIT	E PONDING ARE	A (Prismatic)Listed below (Recalc)
Elevation (fee		Surf.Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	
82.1	10	230		0	0	
83.0	00	7,000		3,254	3,254	
Device	Routing	Inve	ert Outle	et Device	S	
#1	Primary	82.2	7' 8.0"	Round (3) 8" HDPE X 3.0	0 w/ 2.0" inside fill L= 21.0' CPP, projecting, no headwall, Ke= 0.900
#2	Primary	82.6	Inlet n= 0 0' 30.0 ' Head	/ Outlet li .012 Cor ' long x ' d (feet) 0	nvert= 82.10' / 81. rugated PP, smoo 10.0' breadth WE I .20 0.40 0.60 0.8	40' S= 0.0333 '/' Cc= 0.900 th interior, Flow Area= 0.28 sf R FLOW OVER WALKING PATH 30 1.00 1.20 1.40 1.60 2.69 2.68 2.69 2.67 2.64

Primary OutFlow Max=10.90 cfs @ 12.22 hrs HW=82.84' TW=0.00' (Dynamic Tailwater) 1=(3) 8" HDPE (Inlet Controls 1.86 cfs @ 2.21 fps)
2=WEIR FLOW OVER WALKING PATH (Weir Controls 9.03 cfs @ 1.24 fps)

Pond OFFSITE: OFFSITE PONDING AREA IN GRASS

1611-08-Existing Condtions

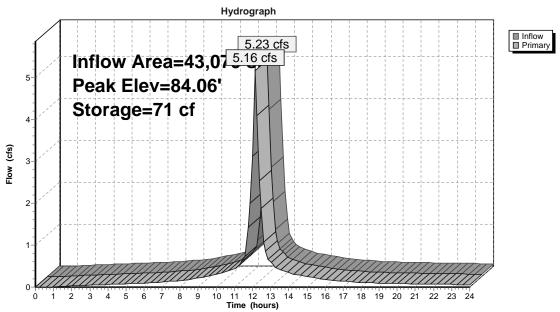
Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 86

Summary for Pond P-2A: Parking Lot/Driveway

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 84.06° @ 12.14 hrs Surf.Area= 857 sf Storage= 71 cf

Plug-Flow detention time= 0.4 min calculated for 22,344 cf (99% of inflow) Center-of-Mass det. time= 0.4 min (747.4 - 747.1)

Volume	Invert	Avail.Storage	Storage Description
#1	82.38'	14 cf	4.00'D x 1.10'H Ex.CB
#2	83.45'	1,680 cf	Parking/Driveway (Prismatic)Listed below (Recalc)
' <u></u>		1 694 cf	Total Available Storage


Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
83.45	4	0	0
84.00	103	29	29
84.50	6,500	1,651	1,680

Device	Routing	Invert	Outlet Devices
#1	Primary	82.46'	6.0" Round 6"PVC w/ 1.0" inside fill L= 170.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 82.38' / 81.00' S= 0.0081 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.17 sf
#2	Primary	84.00'	120.0' long x 50.0' breadth Weir Flow Over Curb Towards Lake
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.63

Primary OutFlow Max=4.95 cfs @ 12.14 hrs HW=84.06' TW=0.00' (Dynamic Tailwater) $^{-1}$ =6"PVC (Barrel Controls 0.68 cfs @ 3.90 fps)

²⁼Weir Flow Over Curb Towards Lake (Weir Controls 4.27 cfs @ 0.63 fps)

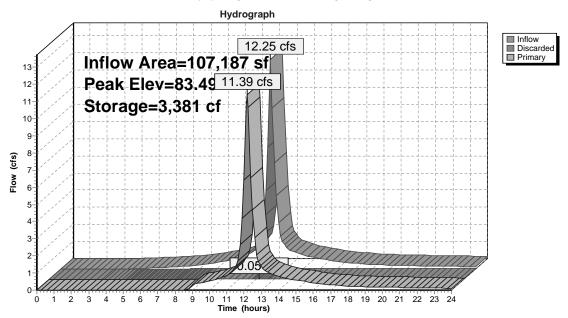
Pond P-2A: Parking Lot/Driveway

1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 88

Summary for Pond P-2C: EX. INFILTRTATION BASIN

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 83.49' @ 12.17 hrs Surf.Area= 7,419 sf Storage= 3,381 cf Flood Elev= 83.30' Surf.Area= 5,645 sf Storage= 2,114 cf

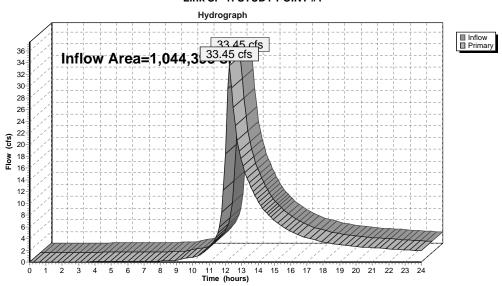

Plug-Flow detention time= 42.9 min calculated for 46,218 cf (95% of inflow) Center-of-Mass det. time= 18.4 min (800.1 - 781.7)

Volume	Inver	t Avail.Sto	rage Storage	Description	
#1	82.50)' 8,3	08 cf EX. INFI	LTRATION BAS	SIN (Prismatic)Listed below (Recalc)
Elevation (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
82.5 83.0 84.0	00	430 2,900 12.050	0 833 7.475	833 8.308	
Device	Routina	Invert	Outlet Devices	-,	
#1	Primary	83.30'			RASS/LAWN AREA 0.80 1.00 1.20 1.40 1.60
#2	Discarded	82.50') 2.68 2.70 2.7 diltration over	70 2.64 2.63 2.64 2.64 2.63 Surface area

Discarded OutFlow Max=0.05 cfs @ 12.17 hrs HW=83.49' (Free Discharge) ←2=Exfiltration (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=10.80 cfs @ 12.17 hrs HW=83.49' TW=82.83' (Dynamic Tailwater) 1-GRASS/LAWN AREA (Weir Controls 10.80 cfs @ 1.16 fps)

Pond P-2C: EX. INFILTRTATION BASIN


1611-08-Existing Condtions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 90

Summary for Link SP-1: STUDY POINT #1

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt=0.12 hrs

Link SP-1: STUDY POINT #1

TABLE OF CONTENTS

Project Reports

- 1 Routing Diagram
- 2 Rainfall Events Listing
- 3 Ground Covers (all nodes)

2-Year Event

- 4 Subcat E-1A: EX. WATERSHED
- 6 Subcat E-1B: EX. WATERSHED
- 8 Subcat E-1C: EX. WATERSHED
- 10 Subcat E-10: EX: WATERSHED
 12 Subcat E-1E: EX: WATERSHED
- 14 Subcat E-2A: EX. WATERSHED
- 16 Subcat E-2B: EX. WATERSHED 18 Subcat E-2C: EX. WATERSHED
- 20 Subcat E-3: EX. WATERSHED
- 22 Pond ES: Offsite Swale to South Culvert
- 24 Pond EW: Wetland to East Culvert
- 26 Pond OFFSITE: OFFSITE PONDING AREA IN GRASS
- 28 Pond P-2A: Parking Lot/Driveway
- 30 Pond P-2C: EX. INFILTRTATION BASIN
- 32 Link SP-1: STUDY POINT #1

10-Year Event

- 33 Subcat E-1A: EX. WATERSHED
- 35 Subcat E-1B: EX. WATERSHED
- Subcat E-1C: EX. WATERSHED
- Subcat E-1D: EX. WATERSHED
- 41 Subcat E-1E: EX. WATERSHED
- 43 Subcat E-2A: EX. WATERSHED 45 Subcat E-2B: EX. WATERSHED
- 47 Subcat E-2C: EX. WATERSHED
- 49 Subcat E-3: EX. WATERSHED
- 51 Pond ES: Offsite Swale to South Culvert

1611-08-Existing Condtions

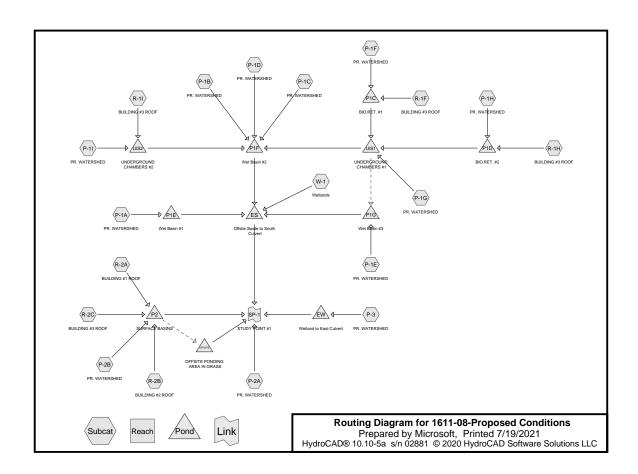
Prepared by Microsoft

HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Printed 7/19/2021

Table of Contents

- 53 Pond EW: Wetland to East Culvert
- 55 Pond OFFSITE: OFFSITE PONDING AREA IN GRASS
- 57 Pond P-2A: Parking Lot/Driveway
- 59 Pond P-2C: EX. INFILTRTATION BASIN
- 61 Link SP-1: STUDY POINT #1


100-Year Event

- 62 Subcat E-1A: EX. WATERSHED
- 64 Subcat E-1B: EX. WATERSHED
- 66 Subcat E-1C: EX. WATERSHED
- 68 Subcat E-1D: EX. WATERSHED
- 70 Subcat E-1E: EX. WATERSHED
- 72 Subcat E-2A: EX. WATERSHED 74 Subcat E-2B: EX. WATERSHED 76 Subcat E-2C: EX. WATERSHED
- 78 Subcat E-3: EX. WATERSHED
- 80 Pond ES: Offsite Swale to South Culvert
- 82 Pond EW: Wetland to East Culvert
- 84 Pond OFFSITE: OFFSITE PONDING AREA IN GRASS
- 86 Pond P-2A: Parking Lot/Driveway
- 88 Pond P-2C: EX. INFILTRTATION BASIN
- 90 Link SP-1: STUDY POINT #1

SECTION 4.0 -

PROPOSED DRAINAGE ANALYSIS

1611-08-Proposed Conditions
Prepared by Microsoft
HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Printed 7/19/2021 Page 2

Rainfall Events Listing

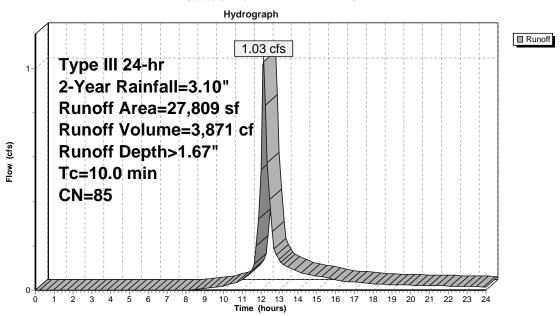
Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	2-Year	Type III 24-hr		Default	24.00	1	3.10	2
2	10-Year	Type III 24-hr		Default	24.00	1	4.50	2
3	100-Year	Type III 24-hr		Default	24.00	1	6.50	2

Printed 7/19/2021 Page <u>3</u>

Ground Covers (all nodes)

 HSG-A (sq-ft)	HSG-B (sq-ft)	HSG-C (sq-ft)	HSG-D (sq-ft)	Other (sq-ft)	Total (sq-ft)	Ground Cover	Subcatchment Numbers
0	0	228,230	0	0	228,230	>75% Grass cover, Good	P-1A, P-1B, P-1C, P-1D, P-1E, P-1F, P-1G, P-1H, P-1I, P-2A, P-2B
0	0	0	0	202,099	202,099	Impervious	P-1A, P-1B, P-1C, P-1D, P-1E, P-1F, P-1G, P-1H, P-1I, P-2A, P-2B, P-3
0	0	0	0	182,015	182,015	Roof	R-1F, R-1H, R-1I, R-2A, R-2B, R-2C
0	0	148,521	237,023	0	385,544	Woods, Good	P-3
0	0	0	46,507	0	46,507	Woods/grass comb., Good	W-1
0	0	376.751	283.530	384.114	1.044.395	TOTAL AREA	

1611-08-Proposed Conditions


Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 4

Summary for Subcatchment P-1A: PR. WATERSHED

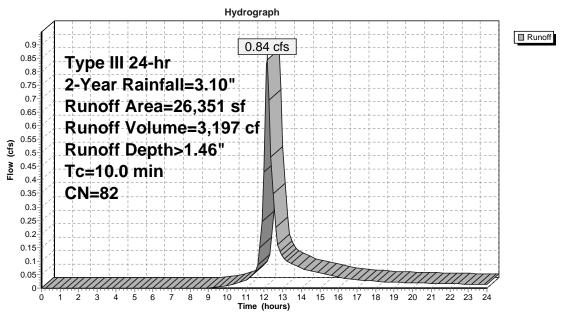
Runoff = 1.03 cfs @ 12.15 hrs, Volume= 3,871 cf, Depth> 1.67"

	Area (sf)	CN	Description	1				
	14,724	74	>75% Gras	s cover, Go	od, HSG C			
1	13,085	98	Impervious					
	27,809	85	Weighted A	Average				
	14,724		52.95% Pe	rvious Area				
	13,085		47.05% Im	pervious Ar	ea			
_	Tc Length (min) (feet)		,	Capacity (cfs)	Description			
	10.0				Direct Entry,	MIN. TC		

Subcatchment P-1A: PR. WATERSHED

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 6


Summary for Subcatchment P-1B: PR. WATERSHED

Runoff = 0.84 cfs @ 12.15 hrs, Volume= 3,197 cf, Depth> 1.46"

A	rea (sf)	CN	Description							
	17,448	74	>75% Gras	s cover, Go	ood, HSG C					
*	8,903	98	Impervious							
	26,351	82	Weighted A	verage						
	17,448		66.21% Pe	rvious Area						
	8,903		33.79% Imp	pervious Ar	ea					
Tc (min)	Length (feet)	Slop (ft/f	,	Capacity (cfs)	Description					
10.0	. ,	`	, , , ,	` '	Direct Entry, N	IIN. TC				

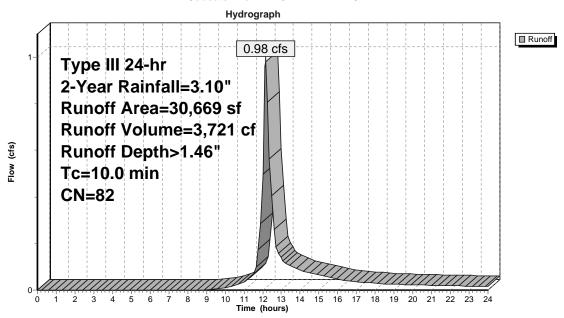
Page 7

Subcatchment P-1B: PR. WATERSHED

1611-08-Proposed Conditions

Prepared by Microsoft
HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 8


Summary for Subcatchment P-1C: PR. WATERSHED

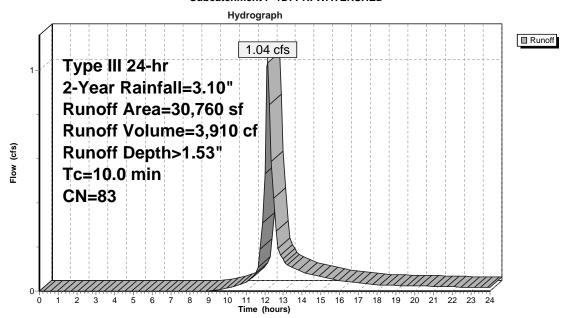
Runoff = 0.98 cfs @ 12.15 hrs, Volume= 3,721 cf, Depth> 1.46"

Ar	ea (sf)	CN	Description						
- 2	20,040	74	>75% Gras	s cover, Go	od, HSG C				
* .	10,629	98	Impervious						
	30,669	82	Weighted A	verage					
2	20,040		65.34% Per	vious Area					
•	10,629		34.66% Imp	ervious Are	ea				
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description				
10.0					Direct Entry,	MIN. TC			

Page 9

Subcatchment P-1C: PR. WATERSHED

1611-08-Proposed Conditions


Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 10

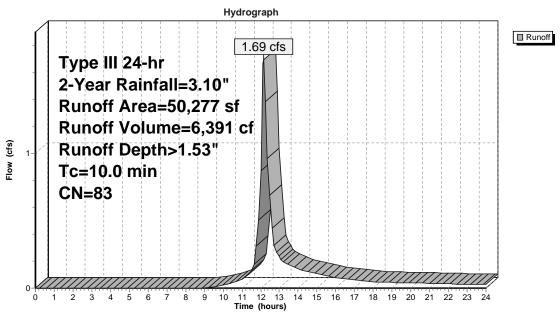
Summary for Subcatchment P-1D: PR. WATERSHED

Runoff = 1.04 cfs @ 12.15 hrs, Volume= 3,910 cf, Depth> 1.53"

Area	(sf) (CN [Description							
19,	029	74 :	75% Gras	s cover, Go	od, HSG C					
* 11,	731	98 I	mpervious							
30,	760	83 \	Veighted A	verage						
19,	029	6	31.86% Per	vious Area						
11,	11,731 38.14% Impervious Are									
	ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0					Direct Entry,	MIN. TC				

Subcatchment P-1D: PR. WATERSHED

1611-08-Proposed Conditions


Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 12

Summary for Subcatchment P-1E: PR. WATERSHED

Runoff = 1.69 cfs @ 12.15 hrs, Volume= 6,391 cf, Depth> 1.53"

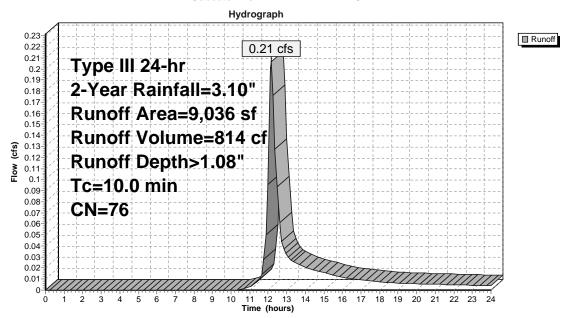
	Area (sf)	CN	Description							
	31,091	74	>75% Gras	s cover, Go	od, HSG C					
*	19,186	98	Impervious							
	50,277	83	Weighted A	verage						
	31,091		61.84% Pe	rvious Area						
	19,186		38.16% Imp	pervious Ar	ea					
T (mir	c Length	Slop (ft/f	,	Capacity (cfs)	Description					
10.	0				Direct Entry, M	IN. TC				

Subcatchment P-1E: PR. WATERSHED

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 14

Summary for Subcatchment P-1F: PR. WATERSHED


Runoff = 0.21 cfs @ 12.16 hrs, Volume= 8

814 cf, Depth> 1.08"

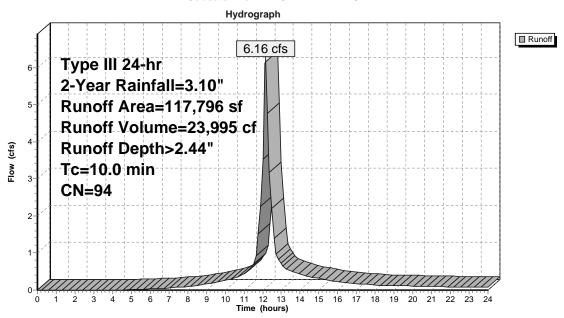
	А	rea (sf)	CN	Description		
		8,156	74	>75% Gras	s cover, Go	ood, HSG C
*		880	98	Impervious		
		9,036	76	Weighted A	verage	
		8,156		90.26% Pe	rvious Area	
		880		9.74% Imp	ervious Area	a
	Tc	Length	Slop	,		Description
_	(min)	(feet)	(ft/f1) (ft/sec)	(cfs)	
	10.0					Direct Entry, MIN. TC

Page 15

Subcatchment P-1F: PR. WATERSHED

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 16


Summary for Subcatchment P-1G: PR. WATERSHED

Runoff = 6.16 cfs @ 12.14 hrs, Volume= 23,995 cf, Depth> 2.44"

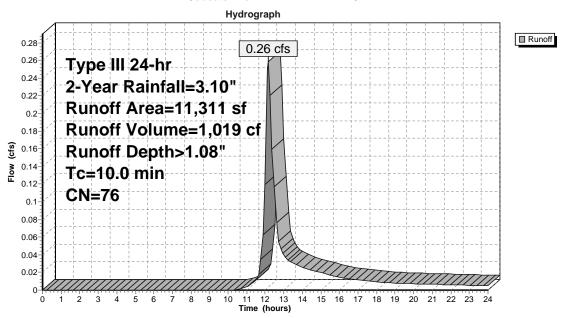
	Area (sf)	CN	Description	1	
	21,862	74	>75% Gras	s cover, Go	ood, HSG C
,	95,934	98	Impervious		
	117,796	94	Weighted A	Average	
	21,862		18.56% Pe	rvious Area	
	95,934		81.44% lm	pervious Ar	rea
_	Tc Length (min) (feet)	Slop (ft/t		Capacity (cfs)	Description
	10.0				Direct Entry, MIN. TC

Page 17

Subcatchment P-1G: PR. WATERSHED

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 18


Summary for Subcatchment P-1H: PR. WATERSHED

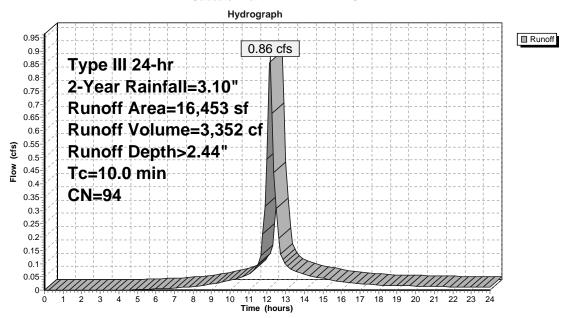
Runoff = 0.26 cfs @ 12.16 hrs, Volume= 1,019 cf, Depth> 1.08"

	Area (sf)	CN	Description			
	10,351	74	>75% Gras	s cover, Go	ood, HSG C	
*	960	98	Impervious			
	11,311	76	Weighted A	verage		
	10,351		91.51% Pe	rvious Area		
	960		8.49% Imp	ervious Area	a	
-	طفسسا	Class	. Valasitu	Canacity	December	
	c Length	Slop			Description	
(mir	n) (feet)	(ft/f	t) (ft/sec)	(cfs)		
10.	0				Direct Entry, MIN. TC	

Page 19

Subcatchment P-1H: PR. WATERSHED

1611-08-Proposed Conditions


Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 20

Summary for Subcatchment P-1I: PR. WATERSHED

Runoff = 0.86 cfs @ 12.14 hrs, Volume= 3,352 cf, Depth> 2.44"

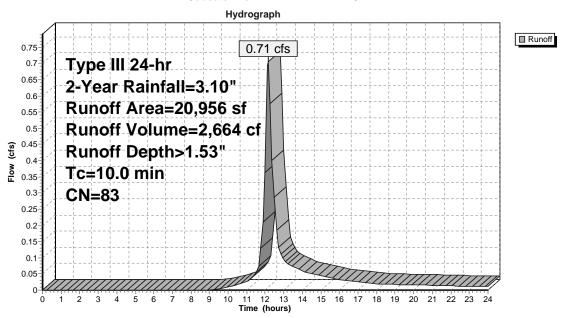
Area		(sf) (CN I	Description									
	2,	2,946 74 >75% Grass cover, Go				od, HSG C							
* 13,507 98 Impervious													
	16,	453	94 \	Weighted Average									
	2,	946		17.91% Pervious Area									
	13,	507	8	32.09% Imp	pervious Are	ea							
		ength (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description							
	10.0					Direct Entry, N	MIN. TC						_

Subcatchment P-1I: PR. WATERSHED

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 22

Summary for Subcatchment P-2A: PR. WATERSHED


Runoff = 0.71 cfs @ 12.15 hrs, Volume= 2,664 cf, Depth> 1.53"

	Area (sf) C		CN	Description					
		12,753 74 >75% Grass cover, God				od, HSG C			
4		8,203 98 Impervious							
	20,956 83 Weighted Average				verage				
		12,753		60.86% Pe	rvious Area				
		8,203		39.14% Imp	pervious Ar	ea			
	Tc	Length	Slop	e Velocity	Capacity	Description			
	(min)	(feet)	(ft/f		(cfs)	Description			
-		(ICCI)	(101	(10300)	(013)	Discot Fatas	. MIN TO		
	10.0					Direct Entry,	y, MIN. IC		

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

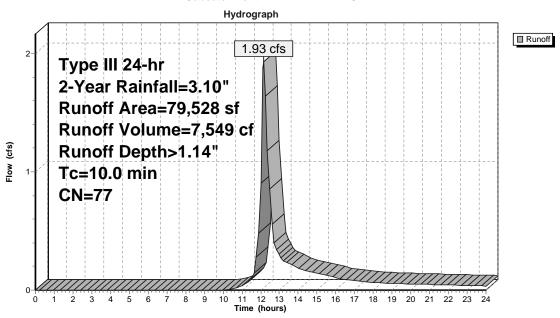
Page 23

Subcatchment P-2A: PR. WATERSHED

1611-08-Proposed Conditions

Prepared by Microsoft
HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 24


Summary for Subcatchment P-2B: PR. WATERSHED

Runoff = 1.93 cfs @ 12.16 hrs, Volume= 7,549 cf, Depth> 1.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 2-Year Rainfall=3.10"

	Д	rea (sf)	CN	Description	ı					
		69,830	74	>75% Gras	s cover, Go	od, HSG C				
4		9,698	98	Impervious						
		79,528	77	Weighted A	verage					
		69,830		87.81% Pe	rvious Area					
		9,698		12.19% lm	pervious Ar	ea				
	т.	Lananth	01	- M-116.	0	December				
			Slop			Description				
_	(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)					
	10.0					Direct Entry, M	IIN. TC			

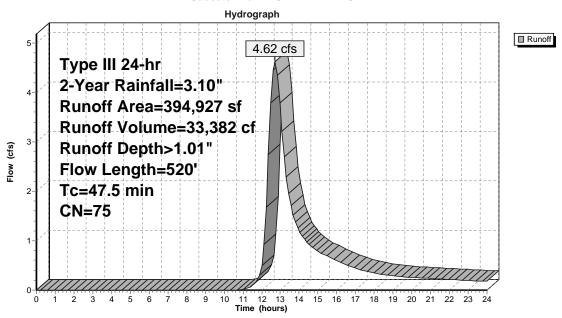
Subcatchment P-2B: PR. WATERSHED

1611-08-Proposed Conditions

Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021

Page 26

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC


Summary for Subcatchment P-3: PR. WATERSHED

Runoff = 4.62 cfs @ 12.70 hrs, Volume= 33,382 cf, Depth> 1.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 2-Year Rainfall=3.10"

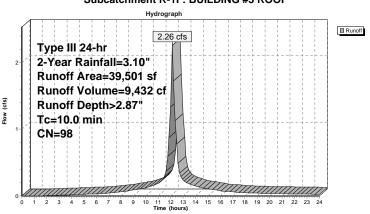
	A	rea (sf)	CN	Description		
	2	237,023	77	Woods, Go	od, HSG D	
*		9,383	98	Impervious		
	1	48,521	70	Woods, Go	od, HSG C	
	3	94.927	75	Weighted A	verage	
	3	85.544		97.62% Pe		
		9,383		2.38% Imp	ervious Area	a
	Tc	Length	Slope	e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	28.3	100	0.010	0.06		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.20"
	1.3	40	0.010	0.50		Shallow Concentrated Flow, B-C
						Woodland Kv= 5.0 fps
	17.9	380	0.0050	0.35		Shallow Concentrated Flow, C-D
_						Woodland Kv= 5.0 fps
	47.5	520	Total			

Subcatchment P-3: PR. WATERSHED

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 28

Summary for Subcatchment R-1F: BUILDING #3 ROOF

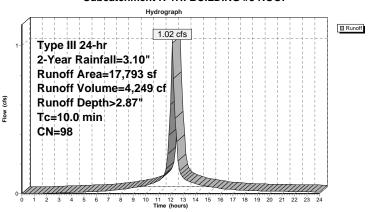

Runoff = 2.26 cfs @ 12.14 hrs, Volume=

9,432 cf, Depth> 2.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 2-Year Rainfall=3.10"

_	Α	rea (sf)	CN	Description		
*		39,501	98	Roof		
_		39,501		100.00% In	npervious A	rea
	Tc		Slop			Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	10.0					Direct Entry, MIN. TC

Subcatchment R-1F: BUILDING #3 ROOF


Summary for Subcatchment R-1H: BUILDING #3 ROOF

Runoff = 1.02 cfs @ 12.14 hrs, Volume= 4,249 cf, Depth> 2.87"

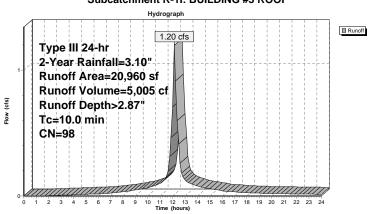
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 2-Year Rainfall=3.10"

	Д	rea (sf)	CN	Description			
*		17,793	98	Roof			
Ī		17,793		100.00% In	npervious A	игеа	
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description	
	10.0					Direct Entry, MIN. TC	

Subcatchment R-1H: BUILDING #3 ROOF

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 30

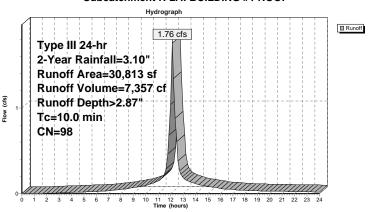

Summary for Subcatchment R-1I: BUILDING #3 ROOF

Runoff = 1.20 cfs @ 12.14 hrs, Volume= 5,005 cf, Depth> 2.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 2-Year Rainfall=3.10"

	P	Area (sf)	CN	Description		
*		20,960	98	Roof		
		20,960		100.00% In	npervious A	Area
	Tc (min)	Length (feet)	Slop		Capacity (cfs)	Description
_	10.0		(1011)	(1/360)	(013)	Direct Entry, MIN. TC

Subcatchment R-1I: BUILDING #3 ROOF


Summary for Subcatchment R-2A: BUILDING #1 ROOF

Runoff 7,357 cf, Depth> 2.87" 1.76 cfs @ 12.14 hrs, Volume=

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 2-Year Rainfall=3.10"

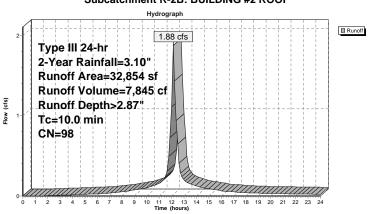
	Α	rea (sf)	CN	Description								
*		30,813	98	Roof								
		30,813		100.00% In	npervious A	rea						
(Tc min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description						
	10.0					Direct Entry, MIN. T	ГС					

Subcatchment R-2A: BUILDING #1 ROOF

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 32


Summary for Subcatchment R-2B: BUILDING #2 ROOF

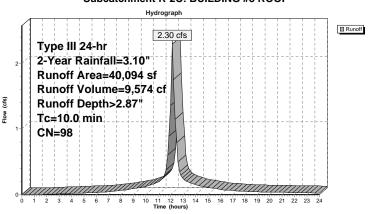
Runoff 1.88 cfs @ 12.14 hrs, Volume= 7,845 cf, Depth> 2.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 2-Year Rainfall=3.10"

	Α	rea (sf)	CN	Description		
*		32,854	98	Roof		
		32,854		100.00% In	npervious A	игеа
	Тс		Slop		Capacity	Description
	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	10.0					Direct Entry, MIN. TC

Subcatchment R-2B: BUILDING #2 ROOF

Page 33


Summary for Subcatchment R-2C: BUILDING #3 ROOF

Runoff 2.30 cfs @ 12.14 hrs, Volume= 9,574 cf, Depth> 2.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 2-Year Rainfall=3.10"

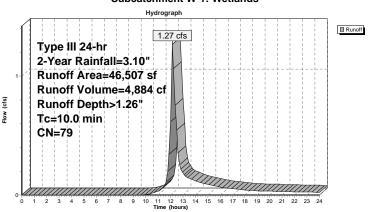
	Д	Area (sf)	CN	Description								
*		40,094	98	Roof								
		40,094		100.00% In	npervious A	rea						
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description						
	10.0					Direct Entry, MIN.	TC					

Subcatchment R-2C: BUILDING #3 ROOF

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 34


Summary for Subcatchment W-1: Wetlands

Runoff 1.27 cfs @ 12.15 hrs, Volume= 4,884 cf, Depth> 1.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 2-Year Rainfall=3.10"

Area (sf)	CN	Description	l									
46,507	79	Woods/gra	oods/grass comb., Good, HSG D									
46,507		100.00% P	ervious Are	а								
Tc Length (min) (feet)	Slop (ft/t		Capacity (cfs)	Description								
10.0		•		Direct Entry,	MIN. TC				•			

Subcatchment W-1: Wetlands

Summary for Pond ES: Offsite Swale to South Culvert

445,223 sf, 56.84% Impervious, Inflow Depth > 1.52" for 2-Year event Inflow Area =

9.40 cfs @ 12.42 hrs, Volume= 1.42 cfs @ 14.47 hrs, Volume= Inflow 56,337 cf

Outflow 30,847 cf, Atten= 85%, Lag= 122.9 min

Primary 1.42 cfs @ 14.47 hrs, Volume= 30,847 cf

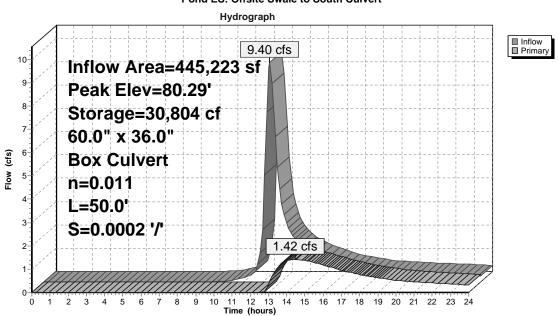
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2Peak Elev= 80.29' @ 14.47 hrs Surf.Area= 35,977 sf Storage= 30,804 cf

Plug-Flow detention time= 277.8 min calculated for 30,847 cf (55% of inflow)

Center-of-Mass det. time= 157.2 min (1,030.3 - 873.2)

Volume	Inve	ert Ava	il.Storage	Storage Description				
#1	79.0	10'	36,108 cf	Custom Stage Data	a (Irregular) Liste	d below (Recalc)		
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
79.0	00	17,000	1,200.0	0	0	17,000		
80.0	00	27,000	4,000.0	21,808	21,808	1,175,651		
81.0	00	63,900	4,200.0	44,146	65,954	1,306,222		
82.0	00	76,600	4,250.0	70,154	136,108	1,340,108		
Device	Routing	In	vert Outl	et Devices				
#1	Primary	80	00' 60-0	"Wx36.0"H Box (Culvert 1 = 50.0'	Box headwall w	/3 square edges Ke= 0.500	

Inlet / Outlet Invert= 80.00' / 79.99' S= 0.0002 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 15.00 sf


Primary OutFlow Max=1.41 cfs @ 14.47 hrs HW=80.29' TW=0.00' (Dynamic Tailwater) -1=Culvert (Barrel Controls 1.41 cfs @ 1.32 fps)

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 36

Pond ES: Offsite Swale to South Culvert

Summary for Pond EW: Wetland to East Culvert

Inflow Area =

Inflow

Outflow 1,592 cf, Atten= 98%, Lag= 677.7 min

Primary 0.08 cfs @ 24.00 hrs, Volume= 1,592 cf

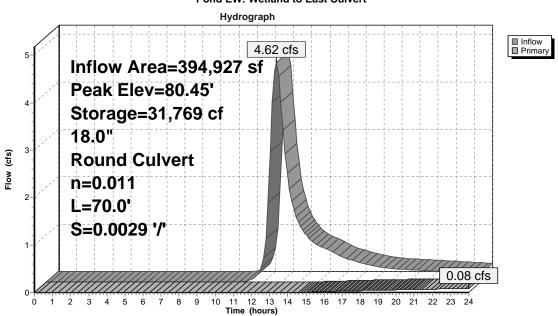
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 80.45' @ 24.00 hrs Surf.Area= 89,808 sf Storage= 31,769 cf

Plug-Flow detention time= 517.2 min calculated for 1,592 cf (5% of inflow)

Center-of-Mass det. time= 347.8 min (1,240.0 - 892.2)

Volume	Invert	t Avai	I.Storage	Storage Description			
#1	80.00	' 2	90,435 cf	Custom Stage Data	a (Irregular)Listed	I below (Recalc)	
Elevation (feet)	S	urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
80.00 81.00 82.00		52,000 149,000 243,000	1,200.0 2,600.0 4,300.0	96,341 194,094	0 96,341 290,435	52,000 475,356 1,408,807	
Device R	outing			et Devices			

80.30' **18.0" Round Culvert** L= 70.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 80.30' / 80.10' S= 0.0029 '/ Cc= 0.900 Primary n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.77 sf


Primary OutFlow Max=0.08 cfs @ 24.00 hrs HW=80.45' TW=0.00' (Dynamic Tailwater) -1=Culvert (Barrel Controls 0.08 cfs @ 1.27 fps)

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 38

Pond EW: Wetland to East Culvert

Summary for Pond OFFSITE: OFFSITE PONDING AREA IN GRASS

0.70 cfs @ 12.98 hrs, Volume= 0.61 cfs @ 13.38 hrs, Volume= Inflow 9,440 cf

Outflow 9,181 cf, Atten= 12%, Lag= 24.0 min

0.61 cfs @ 13.38 hrs, Volume= 9,181 cf

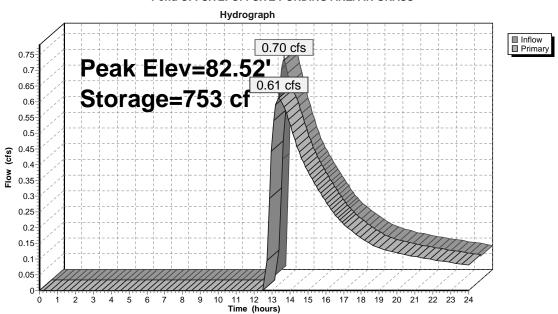
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 82.52' @ 13.38 hrs Surf.Area= 3,373 sf Storage= 753 cf

Plug-Flow detention time= 28.8 min calculated for 9,135 cf (97% of inflow)

Center-of-Mass det. time= 16.2 min (982.9 - 966.6)

Volume	Inve	ert Avail.St	orage Storage	Description		
#1	82.1	10' 3,2	54 cf OFFSIT	E PONDING ARE	A (Prismatic)Listed below (Re	ecalc)
Elevation (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
82.1		230	0	0		
83.0	00	7,000	3,254	3,254		
Device	Routing	Invert	Outlet Device	s		
#1	Primary	82.27'				CPP, projecting, no headwall, Ke= 0.900
#2	Primary	82.60'	n= 0.012 Cor 30.0' long x Head (feet) 0	rugated PP, smooth 10.0' breadth WE 0.20 0.40 0.60 0.	.40' S= 0.0333 '/' Cc= 0.900 oth interior, Flow Area= 0.28 st IR FLOW OVER WALKING P. 80 1.00 1.20 1.40 1.60 0 2.69 2.68 2.69 2.67 2.64	

Primary OutFlow Max=0.61 cfs @ 13.38 hrs HW=82.52' TW=0.00' (Dynamic Tailwater) 1=(3) 8" HDPE (Inlet Controls 0.61 cfs @ 1.26 fps)


-2=WEIR FLOW OVER WALKING PATH (Controls 0.00 cfs)

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 40

Pond OFFSITE: OFFSITE PONDING AREA IN GRASS

Summary for Pond P1C: BIO.RET. #1

48,537 sf, 83.20% Impervious, Inflow Depth > 2.53" for 2-Year event Inflow Area =

Inflow 10,246 cf

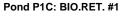
2.47 cfs @ 12.14 hrs, Volume= 1.84 cfs @ 12.16 hrs, Volume= Outflow 7,694 cf, Atten= 26%, Lag= 1.4 min

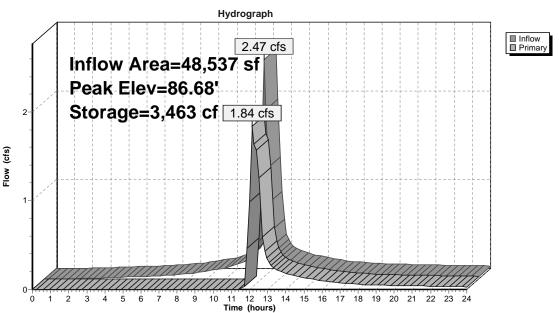
Primary 1.84 cfs @ 12.16 hrs, Volume= 7,694 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 86.68' @ 12.29 hrs Surf.Area= 5,373 sf Storage= 3,463 cf Flood Elev= 86.50' Surf.Area= 5,219 sf Storage= 2,505 cf

Plug-Flow detention time= 159.4 min calculated for 7,656 cf (75% of inflow) Center-of-Mass det. time= 76.3 min (844.5 - 768.1)

Volume	Inv	ert Ava	il.Storage	Storage Description					
#1	#1 86.00'		8,156 cf	BIORETENTION #	#1 (Irregular)Listed	d below (Recalc)			
Elevatio		Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)			
86.0	00	4.804	272.0	0	0	4.804			
86.5	50	5.219	282.0	2.505	2.505	5,266			
87.0		5.649	291.0	2.716	5.221	5,701			
87.5		6,093	301.0	2,935	8,156	6,195			
Device	Routing	In	vert Outle	et Devices					
#1	Primary	83	3.97' 6.0"	Round (2) 6" HDP	PE X 2.00 L= 56.0'	CPP, mitered to	conform to fill, Ke= 0.700		
	Inlet / Outlet Invert= 83.97' / 83.83' S= 0.0025 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.20 sf				00				
#2 Device 1 86.50' 8.0" Horiz. (5) 8" OVERFLOW X 5.00 C= 0.600 Limited to weir flow at low heads					to weir flow at low heads				


Primary OutFlow Max=1.81 cfs @ 12.16 hrs HW=86.65' TW=84.84' (Dynamic Tailwater)


-1=(2) 6" HDPE (Outlet Controls 1.81 cfs @ 4.62 fps)
-2=(5) 8" OVERFLOW (Passes 1.81 cfs of 2.04 cfs potential flow)

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 42

Page 43

Summary for Pond P1D: BIO.RET. #2

29,104 sf, 64.43% Impervious, Inflow Depth > 2.17" for 2-Year event Inflow Area =

Inflow

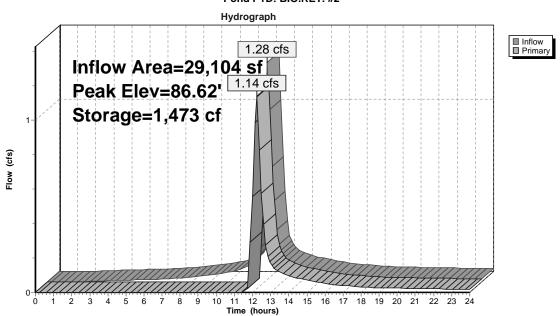
1.28 cfs @ 12.14 hrs, Volume= 1.14 cfs @ 12.22 hrs, Volume= Outflow 4,103 cf, Atten= 10%, Lag= 4.7 min

Primary 1.14 cfs @ 12.22 hrs, Volume= 4,103 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 86.62' @ 12.22 hrs Surf.Area= 2,800 sf Storage= 1,473 cf Flood Elev= 86.50' Surf.Area= 2,628 sf Storage= 1,146 cf

Plug-Flow detention time= 146.2 min calculated for 4,082 cf (77% of inflow) Center-of-Mass det. time= 66.7 min (846.2 - 779.5)

Volume	Inv	ert Ava	il.Storage	Storage Descriptio	n		
#1	86.	00'	1.686 cf	BIORETENTION (Irregular)Listed be	low (Recalc)	
#2	86.		2,826 cf	BIORETENTION (
			4,512 cf	Total Available Sto		(
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
86.0	00	688	169.0	0	0	688	
87.0	00	1,281	203.0	969	969	1,712	
87.5	50	1,592	212.0	717	1,686	2,026	
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area	
						(sq-ft)	
86.0		1,285	193.0 271.0	0 1.675	0 1.675	1,285	
87.0 87.5		2,098 2,512		,	,	4,174	
87.5	50	2,512	280.0	1,151	2,826	4,592	
Device	Routing	Ir	nvert Outl	et Devices			
#1 Primary 83.97' 6.0" Round (2) 6" HDPE X 2.00 L= 54.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 83.97' / 83.83' S= 0.0026 '/' Cc= 0.900							
n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.20 sf #2 Device 1 86.50' 8.0" Horiz. (4) 8" OVERFLOW X 4.00 C= 0.600 Limited to weir flow at low heads							


1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021

Page 44

Primary OutFlow Max=1.11 cfs @ 12.22 hrs HW=86.62' TW=85.09' (Dynamic Tailwater) 1=(2) 6" HDPE (Passes 1.11 cfs of 1.68 cfs potential flow) 2=(4) 8" OVERFLOW (Weir Controls 1.11 cfs @ 1.12 fps)

Pond P1D: BIO.RET. #2

Summary for Pond P1E: Wet Basin #1

Inflow Area = 27,809 sf, 47.05% Impervious, Inflow Depth > 1.67" for 2-Year event

Inflow

1.03 cfs @ 12.15 hrs, Volume= 0.92 cfs @ 12.23 hrs, Volume= Outflow 3,853 cf, Atten= 10%, Lag= 5.1 min

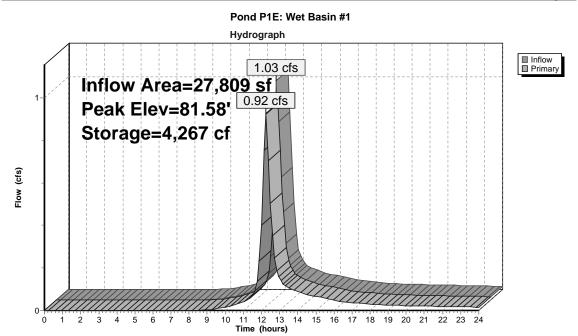
Primary 0.92 cfs @ 12.23 hrs, Volume= 3,853 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Starting Elev= 81.50' Surf.Area= 3,408 sf Storage= 3,980 cf Peak Elev= 81.58' @ 12.23 hrs Surf.Area= 3,495 sf Storage= 4,267 cf (287 cf above start)

Flood Elev= 81.50' Surf.Area= 3,408 sf Storage= 3,980 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= 7.3 min (837.7 - 830.4)

Volume	Invert	Avail.	Storage	Storage Description							
#1	80.00'		7,924 cf	Custom Stage Dat	a (Irregular)Listed	below (Recalc)					
Elevation (feet)		.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)					
80.00		1,930	299.0	0	0	1,930					
81.00	2	2,909	337.0	2,403	2,403	3,879					
82.00	:	3,947	355.0	3,415	5,818	4,929					
82.50	4	4,486	364.0	2,107	7,924	5,475					
Device Po	uting	la.		at Devices							


Primary 81.50 **15.0' long x 12.0' breadth Broad-Crested Rectangular Weir** Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64

Primary OutFlow Max=0.91 cfs @ 12.23 hrs HW=81.58' TW=79.35' (Dynamic Tailwater) -1=Broad-Crested Rectangular Weir (Weir Controls 0.91 cfs @ 0.74 fps)

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 46

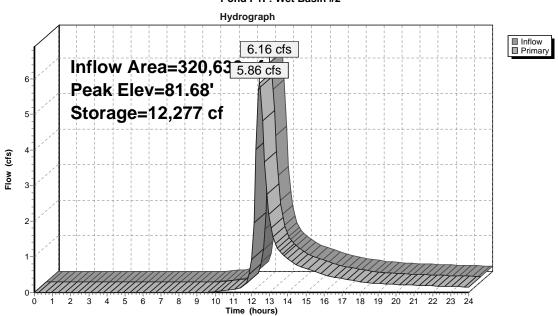
Summary for Pond P1F: Wet Basin #2

320,630 sf, 68.86% Impervious, Inflow Depth > 1.18" for 2-Year event Inflow Area = 6.16 cfs @ 12.35 hrs, Volume= 5.86 cfs @ 12.43 hrs, Volume= Inflow 31,507 cf Outflow 31,337 cf, Atten= 5%, Lag= 4.6 min

Primary 5.86 cfs @ 12.43 hrs, Volume= 31,337 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Starting Elev= 81.50° Surf.Area= 10,650 sf Storage= 10,212 cf Peak Elev= 81.68° @ 12.43 hrs Surf.Area= 11,858 sf Storage= 12,277 cf (2,065 cf above start) Flood Elev= 81.50° Surf.Area= 10,650 sf Storage= 10,212 cf

Plug-Flow detention time= 177.1 min calculated for 21,021 cf (67% of inflow) Center-of-Mass det. time= 7.2 min (873.7 - 866.5)


Volume	Inve	ert Avail	l.Storage	Storage Description			
#1	80.0	00' 2	24,130 cf	Custom Stage Data	a (Irregular)Listed	below (Recalc)	
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
80.0	00	3,826	408.0	0	0	3,826	
81.0		7,690	1,455.0	5,647	5,647	159,050	
82.0	00	14,091	2,271.0	10,730	16,377	401,005	
82.5	50	16,964	2,177.0	7,753	24,130	434,296	
Device	Routing	Inv	vert Outl	et Devices			
#1	Primary	81.	Hea				ir 80 2.00 2.50 3.00 3.50 4.00 4.50 5.00
			5.50 Coe 2.78	f. (English) 2.40 2.52	2 2.70 2.68 2.68	2.67 2.66 2.65	5 2.65 2.65 2.66 2.65 2.66 2.68 2.70 2.73
#2	Primary	81.	.50' 15.0 Hea	' long x 12.0' breadt d (feet) 0.20 0.40 0. f. (English) 2.57 2.62	.60 0.80 1.00 1.2	20 1.40 1.60	

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 48

Primary OutFlow Max=5.74 cfs @ 12.43 hrs HW=81.68' TW=79.62' (Dynamic Tailwater) 1=Broad-Crested Rectangular Weir (Weir Controls 2.77 cfs @ 1.02 fps) -2=Broad-Crested Rectangular Weir (Weir Controls 2.97 cfs @ 1.09 fps)

Pond P1F: Wet Basin #2

Summary for Pond P1G: Wet Basin #3

50,277 sf, 38.16% Impervious, Inflow Depth > 3.94" for 2-Year event Inflow Area =

Inflow

3.20 cfs @ 12.29 hrs, Volume= 2.38 cfs @ 12.53 hrs, Volume= Outflow 16,262 cf, Atten= 25%, Lag= 14.3 min

Primary 2.38 cfs @ 12.53 hrs, Volume= 16,262 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Starting Elev= 81.50' Surf.Area= 7.082 sf Storage= 6.991 cf Peak Elev= 81.83' @ 12.53 hrs Surf.Area= 8.409 sf Storage= 9.579 cf (2.588 cf above start)

Flood Elev= 81.50' Surf.Area= 7,082 sf Storage= 6,991 cf

Plug-Flow detention time= 244.0 min calculated for 9,271 cf (56% of inflow) Center-of-Mass det. time= 20.5 min (887.4 - 866.9)

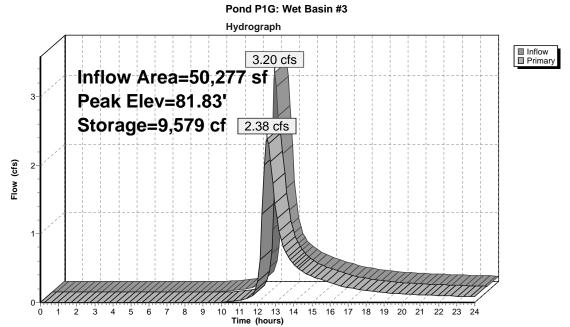
Volume	Invert	Avai	I.Storage	Storage Description	1	
#1	80.00'		16,095 cf	Custom Stage Dat	a (Irregular) Listed	below (Recalc)
Elevation (feet)		Area	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
80.00		2,647	420.0	0	0	2,647
81.00	:	5,312	1,188.0	3,903	3,903	100,924
82.00	9	9,107	1,389.0	7,125	11,028	142,163
82.50	11	1,198	1,400.0	5,067	16,095	144,702

Device Routing Invert Outlet Devices

#1 Primary

5.0' long x 6.0' breadth Broad-Crested Rectangular Weir

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50


Coef. (English) 2.37 2.51 2.70 2.68 2.68 2.67 2.65 2.65 2.65 2.66 2.66 2.67 2.69 2.72 2.76

Primary OutFlow Max=2.34 cfs @ 12.53 hrs HW=81.83' TW=79.76' (Dynamic Tailwater) 1=Broad-Crested Rectangular Weir (Weir Controls 2.34 cfs @ 1.41 fps)

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 50

Summary for Pond P2: SURFACE BASINS

183,289 sf, 61.90% Impervious, Inflow Depth > 2.12" for 2-Year event Inflow Area =

Inflow 32,325 cf

7.86 cfs @ 12.14 hrs, Volume= 0.97 cfs @ 12.98 hrs, Volume= Outflow = 13,123 cf, Atten= 88%, Lag= 50.6 min

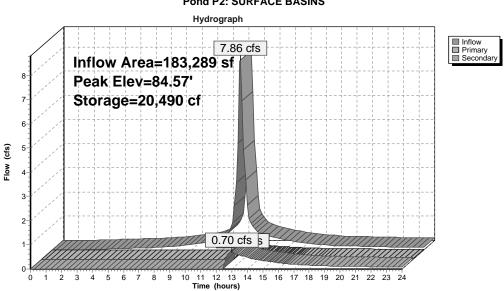
0.27 cfs @ 12.98 hrs, Volume= 0.70 cfs @ 12.98 hrs, Volume= Primary 3,684 cf Secondary = 9.440 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2Peak Elev= 84.50" @ 12.98 hrs Surf.Area= 23,007 sf Storage= 20,490 cf Flood Elev= 84.50' Surf.Area= 22,488 sf Storage= 18,822 cf

Plug-Flow detention time= 325.9 min calculated for 13,123 cf (41% of inflow) Center-of-Mass det. time= 183.9 min (966.6 - 782.8)

Volume	Invert	t Avai	I.Storage	Storage Description			
#1	83.50	' 4	44,950 cf	Custom Stage Data (Irregular)Listed below (Recalc)			
Elevatio	vation Surf.Area Perim. (feet) (sq-ft) (feet)		Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
83.5	50	15,229	2,415.0	Ó	Ó	15,229	
84.0	00	18,845	2,424.0	8,502	8,502	18,900	
84.5	50	22,488	2,434.0	10,320	18,822	22,952	
85.0	00	26,145	2,443.0	12,147	30,969	26,651	
85.5	50	29,817	2,452.0	13,980	44,950	30,365	
Device	Routing	Inv	vert Outle	et Devices			
#1	Primary	82	.40' 6.0"	Round (2) 6" PVC X	2.00 L= 140.0'	CPP, square edg	ge headwall, Ke= 0.500
				/ Outlet Invert= 82.40 .010 PVC, smooth in			0
#2	Device 1	84	.50' 8.0"	Horiz. (2) 8" OVERF	LOW X 2.00 C=	0.600 Limited to	weir flow at low heads
#3	Secondary	84		long x 5.0' breadth			
					60 0.80 1.00 1.	20 1.40 1.60 1.8	30 2.00 2.50 3.00 3.50 4.00 4.50 5.00
			5.50				
			Coef 2.88		2.70 2.68 2.68	3 2.66 2.65 2.65	2.65 2.65 2.67 2.66 2.68 2.70 2.74 2.79

1611-08-Proposed Conditions


Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 52

Primary OutFlow Max=0.27 cfs @ 12.98 hrs HW=84.57' TW=0.00' (Dynamic Tailwater) 1=(2) 6" PVC (Passes 0.27 cfs of 1.95 cfs potential flow) 2=(2) 8" OVERFLOW (Weir Controls 0.27 cfs @ 0.88 fps)

Secondary OutFlow Max=0.69 cfs @ 12.98 hrs HW=84.57' TW=82.48' (Dynamic Tailwater) 13=RIP-RAP OVERFLOW (Weir Controls 0.69 cfs @ 0.63 fps)

Pond P2: SURFACE BASINS

Page 53

Summary for Pond UIS1: UNDERGROUND CHAMBERS #1

Inflow Area =

Inflow = Outflow = Inflow

26,250 cf, Atten= 35%, Lag= 13.9 min

3.84 cfs @ 12.38 hrs, Volume= 2.04 cfs @ 12.38 hrs, Volume= Primary = 16,117 cf Secondary = 10,133 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2Peak Elev= 85.32' @ 12.38 hrs Surf.Area= 10,861 sf Storage= 13,440 cf Flood Elev= 84.36' Surf.Area= 10,861 sf Storage= 8,753 cf

Plug-Flow detention time= 156.4 min calculated for 26,250 cf (73% of inflow) Center-of-Mass det. time= 69.7 min (878.6 - 809.0)

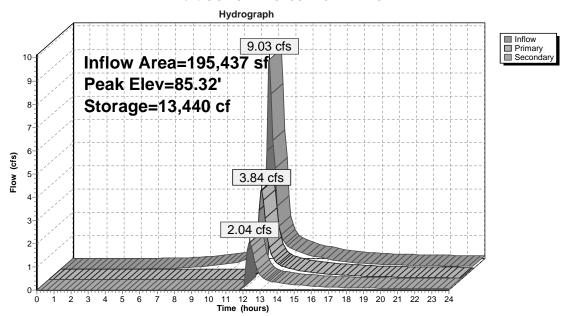
Volume	Invert	Avail.Storage	Storage Description
#1B	83.00'	5,546 cf	8.17'W x 928.80'L x 2.33'H Field B
			17,699 cf Overall - 3,833 cf Embedded = 13,866 cf x 40.0% Voids
#2B	83.50'	3,833 cf	ADS_StormTech SC-310 +Cap x 260 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			260 Chambers in 2 Rows
#3C	83.00'	1,094 cf	14.83'W x 102.88'L x 2.33'H Field C
			3,561 cf Overall - 826 cf Embedded = 2,735 cf x 40.0% Voids
#4C	83.50'	826 cf	ADS_StormTech SC-310 +Cap x 56 Inside #3
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			56 Chambers in 4 Rows
#5D	83.00'	1,244 cf	14.83'W x 117.12'L x 2.33'H Field D
			4,054 cf Overall - 943 cf Embedded = 3,110 cf x 40.0% Voids
#6D	83.50'	943 cf	ADS_StormTech SC-310 +Cap x 64 Inside #5
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			64 Chambers in 4 Rows
#7	83.50'	50 cf	4.00'D x 4.00'H DMH
		40 507 %	Total Available Ctavage

13,537 cf Total Available Storage

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 54


Storage Group B created with Chamber Wizard Storage Group C created with Chamber Wizard Storage Group D created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	84.36'	24.0" Round 24" HDPE AT DMH12 L= 27.0' CPP, projecting, no headwall, Ke= 0.900
	-		Inlet / Outlet Invert= 84.36' / 84.09' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 3.14 sf
#2	Secondary	84.36'	12.0" Round 12" HDPE AT DMH8 L= 26.0' CPP, projecting, no headwall, Ke= 0.900
	•		Inlet / Outlet Invert= 84.36' / 84.10' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=3.75 cfs @ 12.38 hrs HW=85.30' TW=81.68' (Dynamic Tailwater) -1=24" HDPE AT DMH12 (Barrel Controls 3.75 cfs @ 3.77 fps)

Secondary OutFlow Max=2.00 cfs @ 12.38 hrs HW=85.30' TW=81.81' (Dynamic Tailwater) —2=12" HDPE AT DMH8 (Inlet Controls 2.00 cfs @ 2.61 fps)

Pond UIS1: UNDERGROUND CHAMBERS #1

1611-08-Proposed Conditions

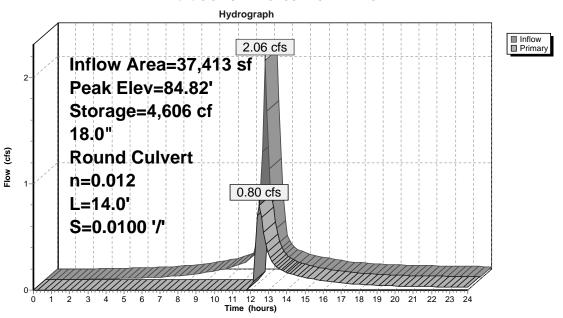
Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 56

Summary for Pond UIS2: UNDERGROUND CHAMBERS #2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 84.82' @ 12.47 hrs Surf.Area= 4,282 sf Storage= 4,606 cf Flood Elev= 84.36' Surf.Area= 4,282 sf Storage= 3,589 cf

Plug-Flow detention time= 242.1 min calculated for 4,560 cf (55% of inflow) Center-of-Mass det. time= 130.5 min (903.1 - 772.6)

Volume	Invert	Avail.Storage	Storage Description
#1A	83.00'	2,994 cf	48.17'W x 88.64'L x 2.33'H Field A
			9,962 cf Overall - 2,477 cf Embedded = 7,486 cf x 40.0% Voids
#2A	83.50'	2,477 cf	ADS_StormTech SC-310 +Cap x 168 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			168 Chambers in 14 Rows
#3	83.50'	50 cf	4.00'D x 4.00'H DMH
		5,521 cf	Total Available Storage


Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	84.36'	18.0" Round 18" HDPE AT DMH3 L= 14.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 84.36' / 84.22' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 1.77 sf

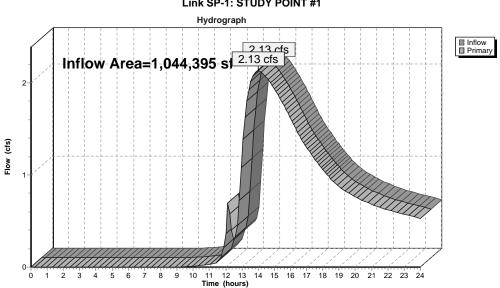
Primary OutFlow Max=0.79 cfs @ 12.48 hrs HW=84.82' TW=81.68' (Dynamic Tailwater) 1=18" HDPE AT DMH3 (Barrel Controls 0.79 cfs @ 2.61 fps)

Page 57

Pond UIS2: UNDERGROUND CHAMBERS #2

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC


Type III 24-hr 2-Year Rainfall=3.10" Printed 7/19/2021 Page 58

Summary for Link SP-1: STUDY POINT #1

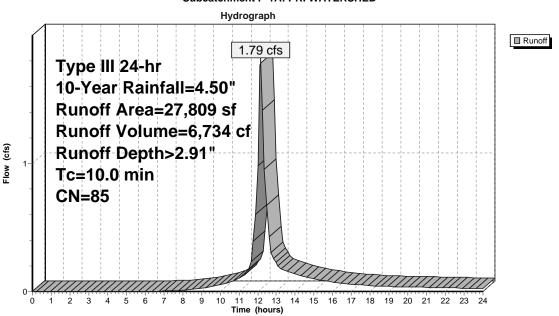
Inflow Area = 47,968 cf 47,968 cf, Atten= 0%, Lag= 0.0 min Inflow Primary

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs

Link SP-1: STUDY POINT #1

Summary for Subcatchment P-1A: PR. WATERSHED

Runoff = 1.79 cfs @ 12.14 hrs, Volume= 6,734 cf, Depth> 2.91"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Area	sf)	CN	Description	Description								
	14,7	24	74	>75% Gras	5% Grass cover, Good, HSG C								
*	13,0	85	98	Impervious	pervious								
	27,8	09	85	Weighted A	ighted Average								
	14,7	24		52.95% Pervious Area									
	13,0	85		47.05% lmլ	pervious Are	ea							
		ngth eet)	Slope (ft/ft		Capacity (cfs)	Description							
_	10.0					Direct Entry.	MIN. TC						

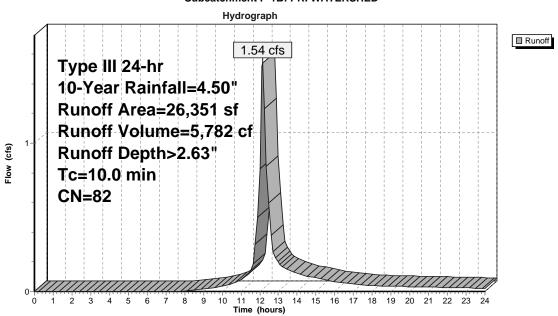
1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 60

Subcatchment P-1A: PR. WATERSHED

Summary for Subcatchment P-1B: PR. WATERSHED

Runoff = 1.54 cfs @ 12.14 hrs, Volume= 5,782 cf, Depth> 2.63"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

_		Area (sf)	CN	Description	escription						
		17,448	74	>75% Gras	75% Grass cover, Good, HSG C						
*		8,903	98	Impervious	pervious						
		26,351	82	Weighted A	eighted Average						
		17,448		66.21% Pe							
		8,903		33.79% Imp	pervious Are	ea					
	т.	a Longth	Clan	. Volocity	Conneity	Description					
	, To		Slop		Capacity	Description					
_	(min) (feet)	(ft/f) (ft/sec)	(cfs)						
	10.0)				Direct Entry, MII	IN. TC				

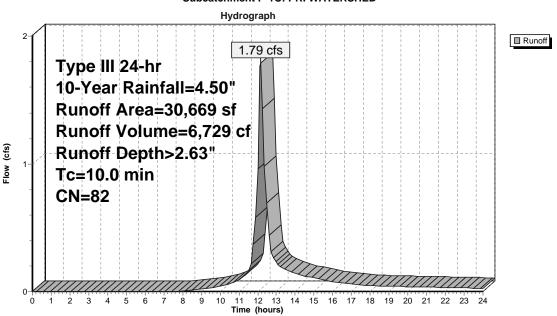
1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 62

Subcatchment P-1B: PR. WATERSHED

Summary for Subcatchment P-1C: PR. WATERSHED

Runoff = 1.79 cfs @ 12.14 hrs, Volume= 6,729 cf, Depth> 2.63"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Area	(sf)	CN	Description			
	20,	040	74	>75% Gras	s cover, Go	od, HSG C	
*	10,	629	98	Impervious			
	30,	669	82	Weighted A	verage		
	20,	040		65.34% Per	vious Area		
	10,	629		34.66% lmp	pervious Are	ea	
			٠.				
		ength	Slope			Description	
	(min) ((feet)	(ft/ft	(ft/sec)	(cfs)		
	10.0					Direct Entry,	, MIN. TC

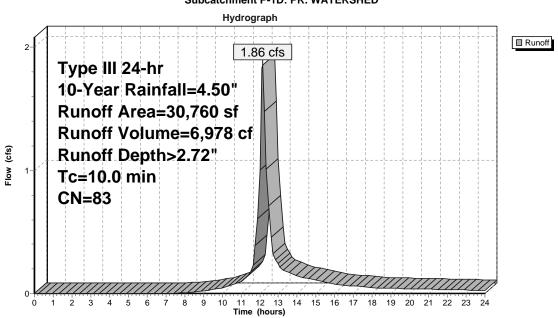
1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 64

Subcatchment P-1C: PR. WATERSHED

Summary for Subcatchment P-1D: PR. WATERSHED

Runoff = 1.86 cfs @ 12.14 hrs, Volume= 6,978 cf, Depth> 2.72"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Area (sf)	CN	Description	1								
	19,029	74	>75% Gras	% Grass cover, Good, HSG C								
ł	11,731	98	Impervious									
	30,760	83	Weighted A	Average								
	19,029		61.86% Pe	rvious Area								
	11,731		38.14% Imp	pervious Ar	ea							
_		01			ъ							
	c Length	Slop			Description	n e e e e e e e e e e e e e e e e e e e						
(mir	n) (feet)	(ft/f	t) (ft/sec)	(cfs)								
10	0				Direct Entry	rv. MIN. TC						

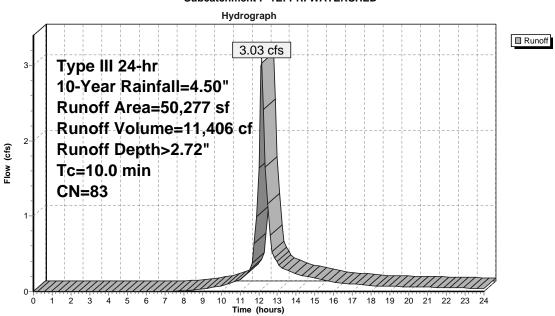
1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 66

Subcatchment P-1D: PR. WATERSHED

Summary for Subcatchment P-1E: PR. WATERSHED

Runoff = 3.03 cfs @ 12.14 hrs, Volume= 11,406 cf, Depth> 2.72"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

Ar	ea (sf)	CN	Description	l					
3	31,091	74	>75% Gras	s cover, Go	d, HSG C				
* 1	19,186	98 Impervious							
5	50,277	83	Weighted A	verage					
3	31,091		61.84% Pe	rvious Area					
1	19,186		38.16% Imp	pervious Are	a				
	Length	Slop	,		Description				
(min)	(feet)	(ft/f	(ft/sec)	(cfs)				.	
10.0					Direct Entry, MIN, TC				

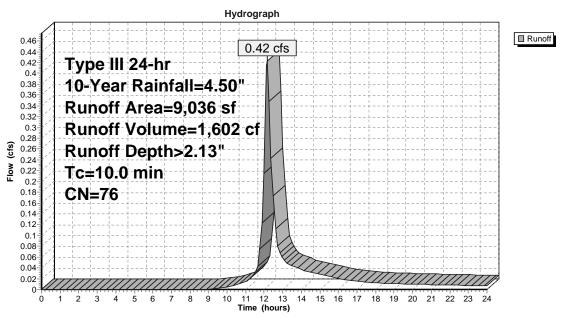
1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 68

Subcatchment P-1E: PR. WATERSHED

Summary for Subcatchment P-1F: PR. WATERSHED

Runoff = 0.42 cfs @ 12.15 hrs, Volume= 1,602 cf, Depth> 2.13"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Area	(sf)	CN	Description							
	8,	156	74	>75% Gras	s cover, Go	od, HSG C					
*	8	380	98	8 Impervious							
	9,0	036	76	Weighted A	verage						
	8,	156		90.26% Pe	rvious Area						
		380		9.74% Impe	ervious Area	a					
(r		ngth feet)	Slope (ft/ft	,	Capacity (cfs)	Description					
1	10.0		,	, ,	(/	Direct Entry,	, MIN. TC				

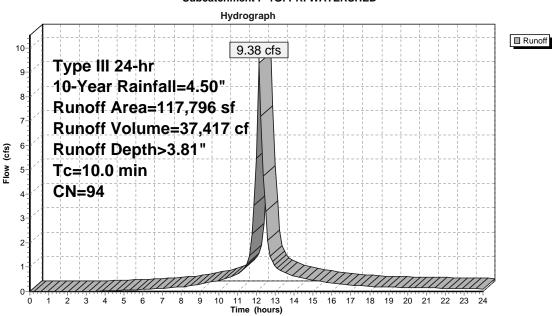
1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 70

Subcatchment P-1F: PR. WATERSHED

Summary for Subcatchment P-1G: PR. WATERSHED

Runoff = 9.38 cfs @ 12.14 hrs, Volume= 37,417 cf, Depth> 3.81"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

_	Area (sf)	CN	Description	ı	
	21,862	74	>75% Gras	s cover, Go	ood, HSG C
*	95,934	98	Impervious		
	117,796	94	Weighted A	verage	
	21,862		18.56% Pe	rvious Area	
	95,934		81.44% lm	pervious Ar	ea
_	Tc Length (min) (feet)	Slop (ft/		Capacity (cfs)	Description
	10.0				Direct Entry, MIN. TC

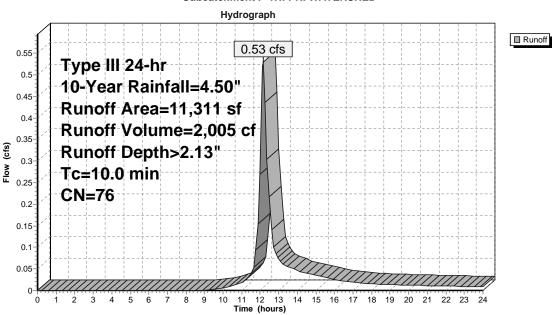
1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 72

Subcatchment P-1G: PR. WATERSHED

Summary for Subcatchment P-1H: PR. WATERSHED

Runoff = 0.53 cfs @ 12.15 hrs, Volume= 2,005 cf, Depth> 2.13"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

_	F	Area (sf)	CN	Description	l		
		10,351	74	>75% Gras	s cover, Go	ood, HSG C	
*	•	960	98	Impervious			
		11,311	76	Weighted A	verage		
		10,351		91.51% Pe	rvious Area		
		960		8.49% Imp	ervious Area	a	
	Tc (min)		Slop (ft/f			Description	
-		(feet)	(11/1) (ft/sec)	(cfs)		
	10.0					Direct Entry, MIN, TC	

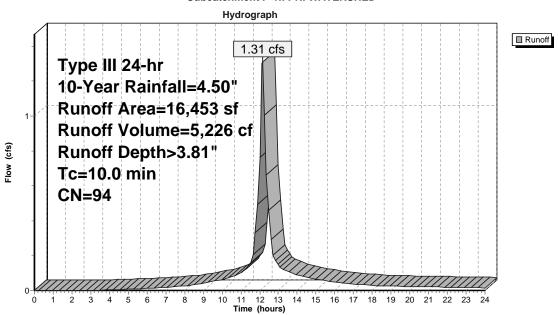
1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 74

Subcatchment P-1H: PR. WATERSHED

Summary for Subcatchment P-1I: PR. WATERSHED

Runoff = 1.31 cfs @ 12.14 hrs, Volume= 5,226 cf, Depth> 3.81"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Area (sf)	CN	Description	l		
	2,946	74	>75% Gras	s cover, Go	ood, HSG C	
*	13,507	98	Impervious			
	16,453	94	Weighted A	verage		
	2,946		17.91% Pe	rvious Area	1	
	13,507		82.09% Imp	pervious Are	rea	
(1	Tc Length			Capacity (cfs)	Description	
$\overline{}$	10.0	(101	1) (10360)	(013)	Direct Entry, MIN, TC	

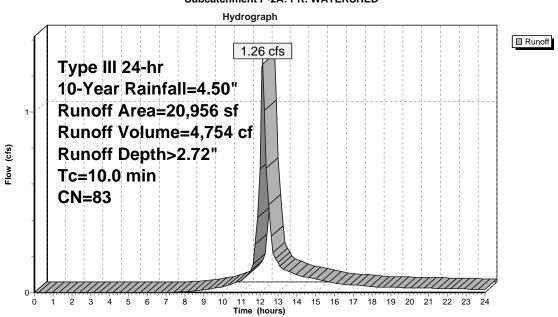
1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 76

Subcatchment P-1I: PR. WATERSHED

Summary for Subcatchment P-2A: PR. WATERSHED

Runoff = 1.26 cfs @ 12.14 hrs, Volume= 4,754 cf, Depth> 2.72"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Area (sf) CN	Description			
	12,753	3 74	>75% Gras	s cover, Go	od, HSG C	
*	8,203	3 98	Impervious			
	20,956	83	Weighted A	verage		
	12,753	3	60.86% Pe	rvious Area		
	8,20	3	39.14% lm	pervious Ar	ea	
	To Long	th Clar	a Valacity	Canacity	Description	
,	Tc Leng				Description	
(r	nin) (fee	et) (ft/	t) (ft/sec)	(cfs)		
1	0.0				Direct Entry,	MIN. TC

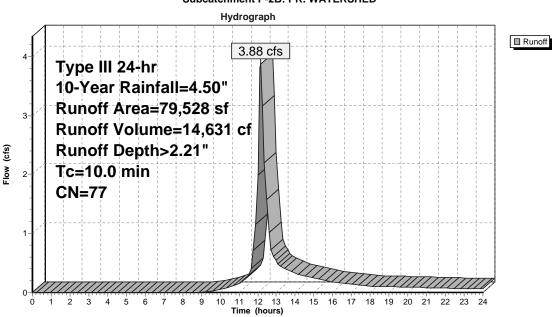
1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 78

Subcatchment P-2A: PR. WATERSHED

Summary for Subcatchment P-2B: PR. WATERSHED

Runoff = 3.88 cfs @ 12.15 hrs, Volume= 14,631 cf, Depth> 2.21"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Area (sf)	CN	Description	l							
	69,830	74	>75% Gras	s cover, Go	od, HSG C						
*	9,698	98	Impervious	pervious							
	79,528	77	Weighted A	verage							
	69,830		87.81% Pe	rvious Area							
	9,698		12.19% lm	pervious Are	ea						
т.		Class	. \/alaait.	Canacity	Description						
, T		Slop		1	Description						
(min) (feet)	(ft/f	t) (ft/sec)	(cfs)							
10.0)				Direct Entry, MIN.	rc .					

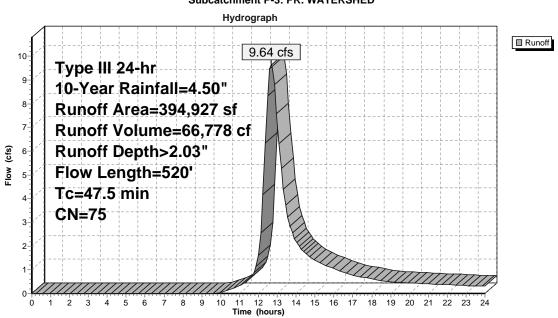
1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 80

Subcatchment P-2B: PR. WATERSHED

Summary for Subcatchment P-3: PR. WATERSHED

Runoff = 9.64 cfs @ 12.67 hrs, Volume= 66,778 cf, Depth> 2.03"

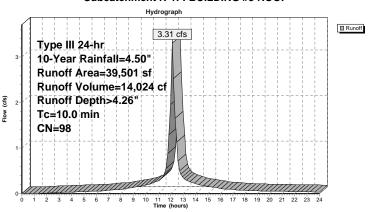

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Α	rea (sf)	CN	Description		
	2	237,023	77	Woods, Go	od, HSG D	
*		9,383	98	mpervious		
	1	148,521	70	Woods, Go	od, HSG C	
	3	394,927	75	Weighted A	verage	
	3	385,544		97.62% Pei	rvious Area	
		9,383		2.38% Impe	ervious Area	a
	Tc	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	28.3	100	0.0100	0.06		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.20"
	1.3	40	0.0100	0.50		Shallow Concentrated Flow, B-C
						Woodland Kv= 5.0 fps
	17.9	380	0.0050	0.35		Shallow Concentrated Flow, C-D
_						Woodland Kv= 5.0 fps
	47.5	520	Total			

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 82

Subcatchment P-3: PR. WATERSHED


Summary for Subcatchment R-1F: BUILDING #3 ROOF

Runoff = 3.31 cfs @ 12.14 hrs, Volume= 14,024 cf, Depth> 4.26"

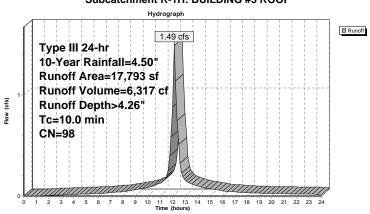
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Area (sf)	CN	Description								
*	39,501	98	Roof								
	39,501	39,501 100.00% Impervious Area									
	Tc Length	Slop		Capacity	Description						
(mi	n) (feet)	(ft/ft) (ft/sec)	(cfs)							
10	.0				Direct Entry, MIN. TC						

Subcatchment R-1F: BUILDING #3 ROOF

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 84

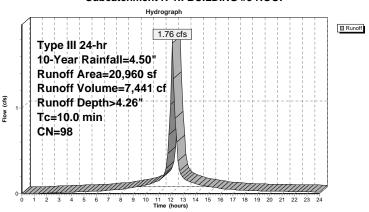

Summary for Subcatchment R-1H: BUILDING #3 ROOF

Runoff = 1.49 cfs @ 12.14 hrs, Volume= 6,317 cf, Depth> 4.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Α	rea (sf)	CN	Description								
*		17,793	98	Roof								
		17,793	100.00% Impervious Area									
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description						
	10.0					Direct Entry, MIN. TC						

Subcatchment R-1H: BUILDING #3 ROOF


Summary for Subcatchment R-11: BUILDING #3 ROOF

Runoff = 1.76 cfs @ 12.14 hrs, Volume= 7,441 cf, Depth> 4.26"

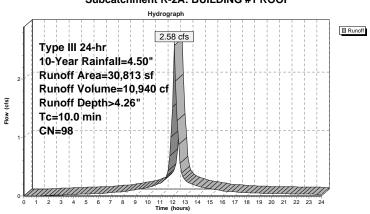
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Area (sf)	CN	Description								
*	20,960	98	Roof	Roof							
	20,960		100.00% Impervious Area								
	Tc Length				Description						
(m	in) (feet	(ft/f	t) (ft/sec)	(cfs)							
10	0.0				Direct Entry, MIN. TC						

Subcatchment R-1I: BUILDING #3 ROOF

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 86

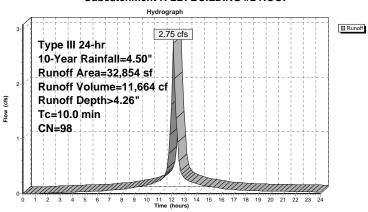

Summary for Subcatchment R-2A: BUILDING #1 ROOF

Runoff = 2.58 cfs @ 12.14 hrs, Volume= 10,940 cf, Depth> 4.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

	A	Area (sf)	CN	Description								
*		30,813	98	Roof	coof							
		30,813		100.00% Impervious Area								
	Tc		Slope			Description						
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)							
	10.0					Direct Entry, MIN. TC						

Subcatchment R-2A: BUILDING #1 ROOF


Summary for Subcatchment R-2B: BUILDING #2 ROOF

Runoff = 2.75 cfs @ 12.14 hrs, Volume= 11,664 cf, Depth> 4.26"

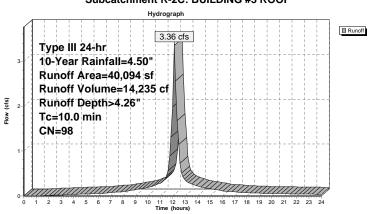
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Д	rea (sf)	CN	Description						
*		32,854	98	Roof						
		32,854		100.00% In	npervious A	rea				
	Tc	Length	Slop	e Velocity	Capacity	Description				
_	(min)	(feet)	(ft/f) (ft/sec)	(cfs)					
	10.0					Direct Entry, MIN. TC				

Subcatchment R-2B: BUILDING #2 ROOF

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 88


Summary for Subcatchment R-2C: BUILDING #3 ROOF

Runoff = 3.36 cfs @ 12.14 hrs, Volume= 14,235 cf, Depth> 4.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

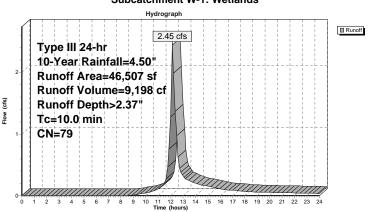
	A	rea (sf)	CN	Description	Description							
*		40,094	98	Roof	oof							
		40,094		100.00% In	ırea							
(Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description						
	10.0					Direct Entry, MIN. TC						

Subcatchment R-2C: BUILDING #3 ROOF

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Page 89


Summary for Subcatchment W-1: Wetlands

Runoff = 2.45 cfs @ 12.15 hrs, Volume= 9,198 cf, Depth> 2.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 10-Year Rainfall=4.50"

Ar	ea (sf)	CN	Description									
4	46,507	79	Woods/grass comb., Good, HSG D									
	46,507	07 100.00% Pervious Area										
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description							
10.0					Direct Entry, M	IIN. TC						

Subcatchment W-1: Wetlands

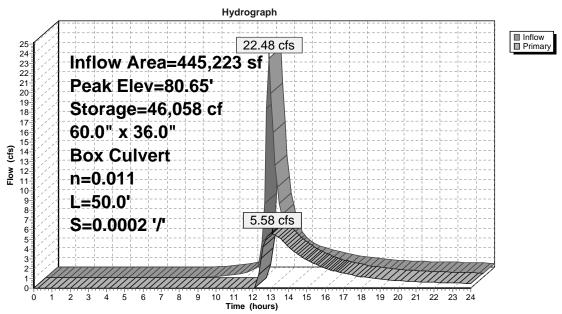
1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 90

Summary for Pond ES: Offsite Swale to South Culvert

 Inflow Area = Inflow = 0.0tflow = 0.0tflow = 0.0tflow = 0.0tflow = 0.0tflow = 0.5.58 cfs @ 13.09 hrs, Volume= 0.5.86 cf. @ 13.0

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 80.65° @ 13.09 hrs Surf.Area= 49,078 sf Storage= 46,058 cf


Plug-Flow detention time= 181.2 min calculated for 76,205 cf (74% of inflow) Center-of-Mass det. time= 96.8 min (943.2 - 846.4)

Volume	Invert	Avai	l.Storage	Storage Description	า			
#1	79.00'	136,108 cf		Custom Stage Data (Irregular)Listed below (Recalc)				
Elevation (feet)		Area sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
79.00	17	7,000	1,200.0	0	0	17,000		
80.00	27	7,000	4,000.0	21,808	21,808	1,175,651		
81.00	63	3,900	4,200.0	44,146	65,954	1,306,222		
82.00	76	6,600	4,250.0	70,154	136,108	1,340,108		

DeviceRoutingInvertOutlet Devices#1Primary80.00'60.0" W x 36.0" H Box Culvert L= 50.0' Box, headwall w/3 square edges, Ke= 0.500 Inlet / Outlet Invert= 80.00' / 79.99' S= 0.0002 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 15.00 sf

Primary OutFlow Max=5.58 cfs @ 13.09 hrs HW=80.65' TW=0.00' (Dynamic Tailwater) 1=Culvert (Barrel Controls 5.58 cfs @ 2.30 fps)

Pond ES: Offsite Swale to South Culvert

1611-08-Proposed Conditions

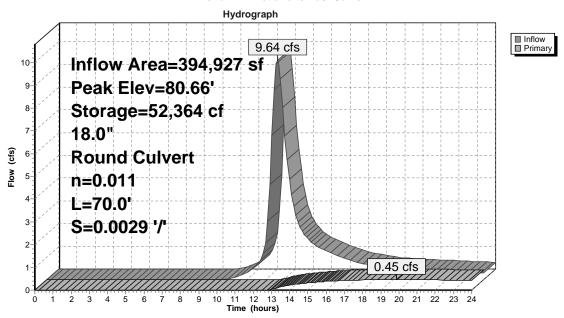
Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 92

Summary for Pond EW: Wetland to East Culvert

 Inflow Area = Inflow = 0.64 cfs @ 12.67 hrs, Volume= 0.45 cfs @ 19.85 hrs, Volume= 0.45 cfs @ 19.85 hrs, Volume= 15,504 cf, Atten= 95%, Lag= 430.8 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 80.66' @ 19.85 hrs Surf.Area= 110,383 sf Storage= 52,364 cf

Plug-Flow detention time= 414.1 min calculated for 15,427 cf (23% of inflow) Center-of-Mass det. time= 275.5 min (1,147.8 - 872.3)


Volume	Invert	Avail	.Storage	Storage Description	1	
#1	80.00'	29	90,435 cf	Custom Stage Dat	a (Irregular) Listed	below (Recalc)
Elevation	Surf.	.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
80.00	52	2,000	1,200.0	0	0	52,000
81.00	149	9,000	2,600.0	96,341	96,341	475,356
82.00	243	3,000	4,300.0	194,094	290,435	1,408,807

Device Routing Invert Outlet Devices

#1 Primary 80.30' 18.0" Round Culvert L= 70.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 80.30' / 80.10' S= 0.0029 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.77 sf

Primary OutFlow Max=0.45 cfs @ 19.85 hrs HW=80.66' TW=0.00' (Dynamic Tailwater) 1=Culvert (Barrel Controls 0.45 cfs @ 2.10 fps)

Pond EW: Wetland to East Culvert

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 94

Summary for Pond OFFSITE: OFFSITE PONDING AREA IN GRASS

4.72 cfs @ 12.40 hrs, Volume= 4.66 cfs @ 12.47 hrs, Volume= Inflow 23,168 cf

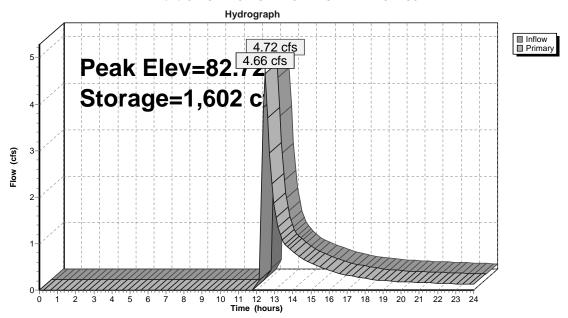
Outflow 22,866 cf, Atten= 1%, Lag= 4.5 min

4.66 cfs @ 12.47 hrs, Volume= Primary 22.866 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 82.72' @ 12.47 hrs Surf.Area= 4,914 sf Storage= 1,602 cf

Plug-Flow detention time= 17.5 min calculated for 22,866 cf (99% of inflow)

Center-of-Mass det. time= 10.4 min (895.1 - 884.7)


Volume	Inve	ert Avail.St	orage Storage	Description				
#1	82.1	10' 3,2	254 cf OFFSIT I	E PONDING AREA	A (Prismatic)Listed below (Recalc)			
Elevatio (fee 82.7 83.0	et) 10	Surf.Area (sq-ft) 230 7,000	Inc.Store (cubic-feet) 0 3,254	Cum.Store (cubic-feet) 0 3,254				
Device	Routing	Invert	Outlet Devices	3				
#1	Primary	82.27'			0 w/ 2.0" inside fill L= 21.0' CPP, projecting, no headwall, Ke= 0.900			
#2 Primary		82.60'	Inlet / Outlet Invert= 82.10' / 81.40' S= 0.0333 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.28 sf 30.0' long x 10.0' breadth WEIR FLOW OVER WALKING PATH Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64					

Primary OutFlow Max=4.60 cfs @ 12.47 hrs HW=82.72' TW=0.00' (Dynamic Tailwater)

-1=(3) 8" HDPE (Inlet Controls 1.44 cfs @ 1.78 fps)

T=(3) 8" HDPE (Inlet Controls 1.44 ರಾ ಆ 1.70 புக) 2=WEIR FLOW OVER WALKING PATH (Weir Controls 3.16 cfs @ 0.87 fps)

Pond OFFSITE: OFFSITE PONDING AREA IN GRASS

1611-08-Proposed Conditions

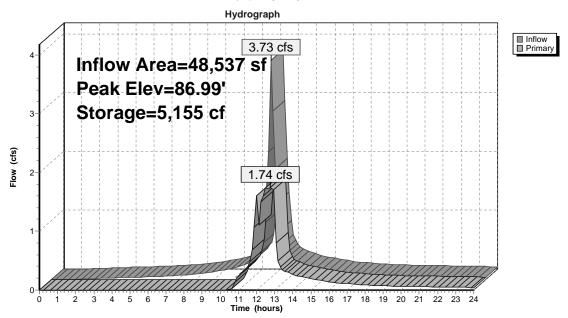
Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 96

Summary for Pond P1C: BIO.RET. #1

48,537 sf, 83.20% Impervious, Inflow Depth > 3.86" for 10-Year event 3.73 cfs @ 12.14 hrs, Volume= 15,626 cf 1.74 cfs @ 12.75 hrs, Volume= 13,060 cf, Atten= 53%, Lag= 36.6 1.74 cfs @ 12.75 hrs, Volume= 13,060 cf Inflow Area = Inflow 13,060 cf, Atten= 53%, Lag= 36.6 min Outflow Primary

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 86.99' @ 12.41 hrs Surf.Area= 5,639 sf Storage= 5,155 cf Flood Elev= 86.50' Surf.Area= 5,219 sf Storage= 2,505 cf


Plug-Flow detention time= 135.4 min calculated for 13,060 cf (84% of inflow) Center-of-Mass det. time= 67.8 min (829.7 - 761.9)

Volume	Inve	rt Avail	.Storage	Storage Description						
#1	86.0	0'	8,156 cf	BIORETENTION #1	l (Irregular)Listed	below (Recalc)				
Elevation (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)				
86.0	00	4,804	272.0	0	0	4,804				
86.5	50	5,219	282.0	2,505	2,505	5,266				
87.0	00	5,649	291.0	2,716	5,221	5,701				
87.5	50	6,093	301.0	2,935	8,156	6,195				
Device	Routing	Inv	ert Outle	et Devices						
#1	Primary	83.	.97' 6.0"	Round (2) 6" HDPE	E X 2.00 L= 56.0'	CPP, mitered to	conform to fill, Ke= 0.700			
				/ Outlet Invert= 83.9						
			n= 0	.012 Corrugated PP	012 Corrugated PP, smooth interior, Flow Area= 0.20 sf					
#2	Device 1	Device 1 86.50'		" Horiz. (5) 8" OVERFLOW X 5.00 C= 0.600 Limited to weir flow at low heads						

Primary OutFlow Max=1.74 cfs @ 12.75 hrs HW=86.82' TW=85.16' (Dynamic Tailwater)
1=(2) 6" HDPE (Outlet Controls 1.74 cfs @ 4.42 fps)
2=(5) 8" OVERFLOW (Passes 1.74 cfs of 4.79 cfs potential flow)

HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Pond P1C: BIO.RET. #1

1611-08-Proposed Conditions

Primary

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

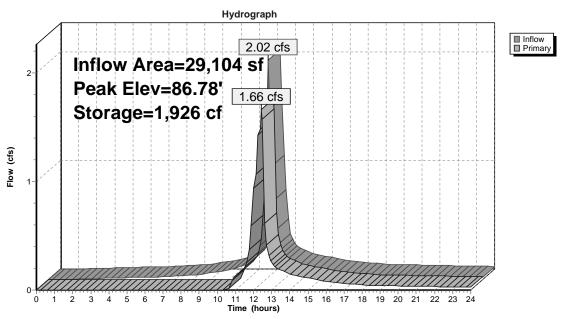
Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 98

Summary for Pond P1D: BIO.RET. #2

Inflow Area = Inflow 7,151 cf, Atten= 18%, Lag= 17.5 min Outflow

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 86.78' @ 12.27 hrs Surf.Area= 3,030 sf Storage= 1,926 cf

Flood Elev= 86.50' Surf.Area= 2,628 sf Storage= 1,146 cf


Plug-Flow detention time= 113.7 min calculated for 7,115 cf (86% of inflow) Center-of-Mass det. time= 53.8 min (827.8 - 774.0)

Volume	Invert	Avail.Storage	Storage Descript	ion							
#1	86.00'	1,686 0	f BIORETENTION	(Irregular)Listed b	elow (Recalc)						
#2	86.00'	2,826 c	f BIORETENTION	(Irregular)Listed b	elow (Recalc)						
		4,512 0	f Total Available S	Total Available Storage							
Elevation (feet)		Area Perin		Cum.Store (cubic-feet)	Wet.Area (sq-ft)						
86.00		688 169	, , , , , , , , , , , , , , , , , , , ,	(cable feet)	688						
87.00		1,281 203.0	969	969	1,712						
87.50	•	1,592 212	0 717	1,686	2,026						
Elevation	Surf.	.Area Perin	n. Inc.Store	Cum.Store	Wet.Area						
(feet)	(sq-ft) (fee	t) (cubic-feet)	(cubic-feet)	(sq-ft)						
86.00		1,285 193	0 0	0	1,285						
87.00	2	2,098 271	0 1,675	1,675	4,174						
87.50	2	2,512 280	0 1,151	2,826	4,592						
Device Ro	Device Routing Invert Outlet Devices										
#1 Pr											

Inlet / Outlet Invert= 83.97' / 83.83' S= 0.0026 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.20 sf 86.50' 8.0" Horiz. (4) 8" OVERFLOW X 4.00 C= 0.600 Limited to weir flow at low heads #2 Device 1

Primary OutFlow Max=1.53 cfs @ 12.43 hrs HW=86.69' TW=85.44' (Dynamic Tailwater)
1=(2) 6" HDPE (Outlet Controls 1.53 cfs @ 3.89 fps)
2=(4) 8" OVERFLOW (Passes 1.53 cfs of 2.36 cfs potential flow)

Pond P1D: BIO.RET. #2

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

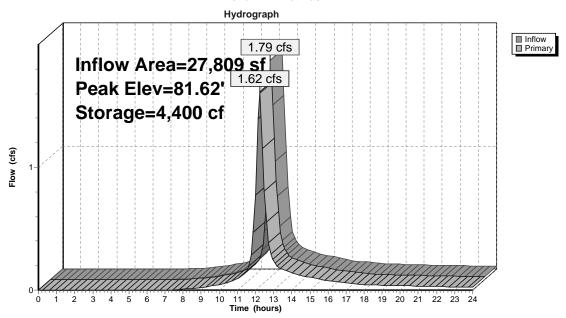
Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 100

Summary for Pond P1E: Wet Basin #1

27,809 sf, 47.05% Impervious, Inflow Depth > 2.91" for 10-Year event 1.79 cfs @ 12.14 hrs, Volume= 6,734 cf 1.62 cfs @ 12.22 hrs, Volume= 6,710 cf, Atten= 9%, Lag= 4.5 min 1.62 cfs @ 12.22 hrs, Volume= 6,710 cf Inflow Area = Inflow 6,710 cf, Atten= 9%, Lag= 4.5 min Outflow Primary

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Starting Elev= 81.50' Surf.Area= 3,408 sf Storage= 3,980 cf
Peak Elev= 81.62' @ 12.22 hrs Surf.Area= 3,535 sf Storage= 4,400 cf (419 cf above start) Flood Elev= 81.50' Surf.Area= 3,408 sf Storage= 3,980 cf

Plug-Flow detention time= 279.8 min calculated for 2,716 cf (40% of inflow) Center-of-Mass det. time= 6.4 min (821.0 - 814.7)


Volume	Invert	Avai	l.Storage	Storage Description	1		
#1	80.00'		7,924 cf	Custom Stage Data (Irregular)Listed below (Recalc)			
Elevation	Surf.	.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
80.00	•	1,930	299.0	0	0	1,930	
81.00	2	2,909	337.0	2,403	2,403	3,879	
82.00	3	3,947	355.0	3,415	5,818	4,929	
82.50	4	4,486	364.0	2,107	7,924	5,475	

Device Routing Invert Outlet Devices #1 Primary

15.0' long x 12.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64

Primary OutFlow Max=1.57 cfs @ 12.22 hrs HW=81.62' TW=79.95' (Dynamic Tailwater) -1=Broad-Crested Rectangular Weir (Weir Controls 1.57 cfs @ 0.88 fps)

Pond P1E: Wet Basin #1

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

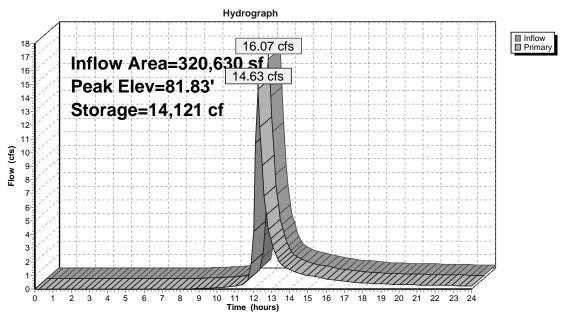
Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021

Page 102

Summary for Pond P1F: Wet Basin #2

320,630 sf, 68.86% Impervious, Inflow Depth > 2.21" for 10-Year event 16.07 cfs @ 12.16 hrs, Volume= 59,141 cf 14.63 cfs @ 12.25 hrs, Volume= 58,920 cf, Atten= 9%, Lag= 5.6 min 58,920 cf Inflow Area = Inflow 58,920 cf, Atten= 9%, Lag= 5.6 min Outflow Primary

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Starting Elev= 81.50' Surf.Area= 10,650 sf Storage= 10,212 cf
Peak Elev= 81.83' @ 12.25 hrs Surf.Area= 12,886 sf Storage= 14,121 cf (3,910 cf above start) Flood Elev= 81.50' Surf.Area= 10,650 sf Storage= 10,212 cf


Plug-Flow detention time= 104.1 min calculated for 48,708 cf (82% of inflow) Center-of-Mass det. time= 6.0 min (843.1 - 837.2)

Volume Invert		ert Avai	il.Storage	Storage Description					
#1	80.0	00'	24,130 cf	Custom Stage Data	a (Irregular)Listed	below (Recalc)			
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
80.0	00	3,826	408.0	0	0	3,826			
81.0	00	7,690	1,455.0	5,647	5,647	159,050			
82.0	00	14,091	2,271.0	10,730	16,377	401,005			
82.5	50	16,964	2,177.0	7,753	24,130	434,296			
Device	Routing	In	vert Outle	et Devices					
#1	Primary	81	.50' 15.0	long x 7.0' breadth	Broad-Crested	Rectangular Wei	ir		
			5.50						
			2.78		2 2.70 2.68 2.68	2.67 2.66 2.65	5 2.65 2.65 2.66 2.65 2.66 2.68 2.70 2.73		
#2	Primary	81	.50' 15.0 Hea	Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64					

Primary OutFlow Max=14.35 cfs @ 12.25 hrs HW=81.83' TW=80.04' (Dynamic Tailwater) -1=Broad-Crested Rectangular Weir (Weir Controls 7.00 cfs @ 1.42 fps)

2=Broad-Crested Rectangular Weir (Weir Controls 7.35 cfs @ 1.49 fps)

Pond P1F: Wet Basin #2

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 104

Summary for Pond P1G: Wet Basin #3

50,277 sf, 38.16% Impervious, Inflow Depth > 6.81" for 10-Year event 6.25 cfs @ 12.15 hrs, Volume= 28,512 cf 4.49 cfs @ 12.34 hrs, Volume= 28,171 cf, Atten= 28%, Lag= 11.7 4.49 cfs @ 12.34 hrs, Volume= 28,171 cf Inflow Area = Inflow 28,171 cf, Atten= 28%, Lag= 11.7 min Outflow

Primary

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2

Starting Elev= 81.50' Surf.Area= 7,082 sf Storage= 6,991 cf Peak Elev= 81.99' @ 12.34 hrs Surf.Area= 9,075 sf Storage= 10,961 cf (3,970 cf above start)

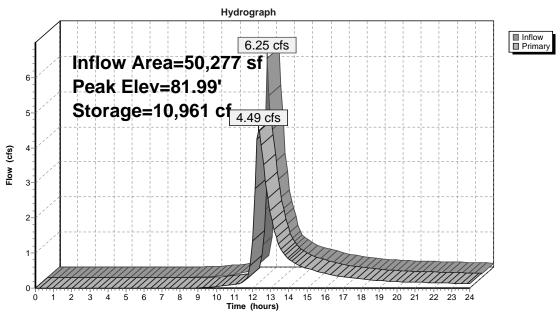
Flood Elev= 81.50' Surf.Area= 7,082 sf Storage= 6,991 cf

Plug-Flow detention time= 152.7 min calculated for 21,075 cf (74% of inflow)

Center-of-Mass det. time= 17.7 min (863.9 - 846.1)

Volume	Invert	Avail.	.Storage	Storage Description	1			
#1	80.00'	80.00' 16,095 cf		Custom Stage Data (Irregular)Listed below (Recalc)				
Elevation	Surf.	Area	Perim.	Inc.Store	Cum.Store	Wet.Area		
(feet)	(9	sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)		
80.00	2	,647	420.0	0	0	2,647		
81.00	5	,312	1,188.0	3,903	3,903	100,924		
82.00	9	,107	1,389.0	7,125	11,028	142,163		
82.50	11	,198	1,400.0	5,067	16,095	144,702		

Device Routing Invert Outlet Devices #1 Primary


81.50

5.0' long x 6.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00

Coef. (English) 2.37 2.51 2.70 2.68 2.68 2.67 2.65 2.65 2.65 2.65 2.66 2.66 2.67 2.69 2.72 2.76 2.83

Primary OutFlow Max=4.45 cfs @ 12.34 hrs HW=81.99' TW=80.25' (Dynamic Tailwater) -1=Broad-Crested Rectangular Weir (Weir Controls 4.45 cfs @ 1.82 fps)

Pond P1G: Wet Basin #3

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 106

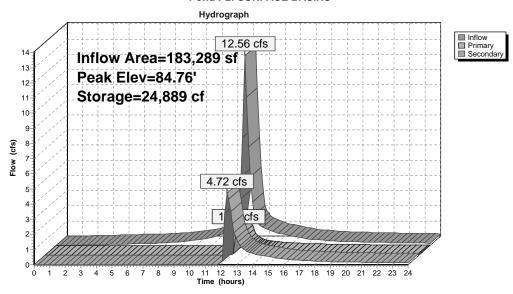
Summary for Pond P2: SURFACE BASINS

183,289 sf, 61.90% Impervious, Inflow Depth > 3.37" for 10-Year event 12.56 cfs @ 12.14 hrs, Volume= 51,469 cf 6.45 cfs @ 12.40 hrs, Volume= 32,145 cf, Atten= 49%, Lag= 15.6 1.74 cfs @ 12.41 hrs, Volume= 8,978 cf Inflow Area = Inflow 12.56 cfs @ 32,145 cf, Atten= 49%, Lag= 15.6 min Outflow =

Primary =

4.72 cfs @ 12.40 hrs, Volume= Secondary = 23.168 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 84.76' @ 12.40 hrs Surf.Area= 24,349 sf Storage= 24,889 cf Flood Elev= 84.50' Surf.Area= 22,488 sf Storage= 18,822 cf


Plug-Flow detention time= 214.1 min calculated for 32,145 cf (62% of inflow) Center-of-Mass det. time= 108.0 min (885.0 - 777.0)

Volume	Invert	Avail	.Storage	Storage Description				
#1	83.50'	83.50' 44,950 cf		Custom Stage Data	a (Irregular)Listed			
Elevation	on Su	Surf.Area		Inc.Store	Cum.Store	Wet.Area		
(fee	et)	(sq-ft)		(cubic-feet)	(cubic-feet)	(sq-ft)		
83.	50	15,229	2,415.0	0	0	15,229		
84.0	00	18,845 2,424.0		8,502	8,502	18,900		
84.	50	22,488 2,434.0		10,320	18,822	22,952		
85.0	00	26,145 2,443.		12,147	30,969	26,651		
85.	50	29,817	2,452.0	13,980	44,950	30,365		
				. = .				
Device	Routing	Inv	ert Outl	et Devices				
#1	Primary	82.	40' 6.0"	Round (2) 6" PVC 2	X 2.00 L= 140.0'	CPP, square edg	ge headwall, Ke= 0.500	
	•		Inlet	/ Outlet Invert= 82.40	0' / 81.00' S= 0.0	100 '/' Cc= 0.900)	
			n=0	.010 PVC, smooth in	nterior, Flow Areas	= 0.20 sf		
#2	Device 1	84.	50' 8.0"	Horiz. (2) 8" OVERF	LOW X 2.00 C=	0.600 Limited to	weir flow at low heads	
#3	Secondary	84.	50' 15.0	' long x 5.0' breadth	RIP-RAP OVER	FLOW		

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 Coef. (English) 2.34 2.50 2.70 2.68 2.68 2.66 2.65 2.65 2.65 2.65 2.67 2.66 2.68 2.70 2.74 2.79 Primary OutFlow Max=1.69 cfs @ 12.41 hrs HW=84.75' TW=0.00' (Dynamic Tailwater) 1=(2) 6" PVC (Passes 1.69 cfs of 2.00 cfs potential flow) 2=(2) 8" OVERFLOW (Orifice Controls 1.69 cfs @ 2.42 fps)

Secondary OutFlow Max=4.55 cfs @ 12.40 hrs HW=84.75' TW=82.71' (Dynamic Tailwater) 13-81P-RAP OVERFLOW (Weir Controls 4.55 cfs @ 1.20 fps)

Pond P2: SURFACE BASINS

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 108

Summary for Pond UIS1: UNDERGROUND CHAMBERS #1

Secondary = 3.22 cfs @ 12.15 hrs, Volume= 17,107 cf

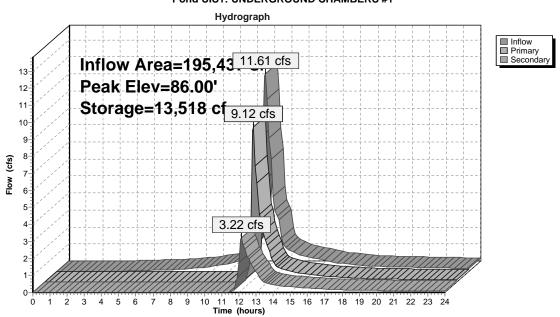
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 86.00' @ 12.15 hrs Surf.Area= 10.861 sf Storage= 13.518 cf Flood Elev= 84.36' Surf.Area= 10.861 sf Storage= 8.753 cf

Plug-Flow detention time= 115.7 min calculated for 47,689 cf (83% of inflow) Center-of-Mass det. time= 51.5 min (848.4 - 796.9)

Volume	Invert	Avail.Storage	Storage Description
#1B	83.00'	5,546 cf	8.17'W x 928.80'L x 2.33'H Field B
			17,699 cf Overall - 3,833 cf Embedded = 13,866 cf x 40.0% Voids
#2B	83.50'	3,833 cf	ADS_StormTech SC-310 +Cap x 260 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			260 Chambers in 2 Rows
#3C	83.00'	1,094 cf	14.83'W x 102.88'L x 2.33'H Field C
			3,561 cf Overall - 826 cf Embedded = 2,735 cf x 40.0% Voids
#4C	83.50'	826 cf	ADS_StormTech SC-310 +Cap x 56 Inside #3
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			56 Chambers in 4 Rows
#5D	83.00'	1,244 cf	14.83'W x 117.12'L x 2.33'H Field D
			4,054 cf Overall - 943 cf Embedded = 3,110 cf x 40.0% Voids
#6D	83.50'	943 cf	
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			64 Chambers in 4 Rows
#7	83.50'	50 cf	4.00'D x 4.00'H DMH
		13.537 cf	Total Available Storage

Storage Group B created with Chamber Wizard Storage Group C created with Chamber Wizard Storage Group D created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	84.36'	24.0" Round 24" HDPE AT DMH12 L= 27.0' CPP, projecting, no headwall, Ke= 0.900
	ř		Inlet / Outlet Invert= 84.36' / 84.09' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 3.14 sf
#2	Secondary	84.36'	12.0" Round 12" HDPE AT DMH8 L= 26.0' CPP, projecting, no headwall, Ke= 0.900
	•		Inlet / Outlet Invert= 84.36' / 84.10' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Corrugated PP smooth interior. Flow Area= 0.79 sf


Primary OutFlow Max=8.41 cfs @ 12.15 hrs HW=85.91' TW=81.79' (Dynamic Tailwater) 1=24" HDPE AT DMH12 (Barrel Controls 8.41 cfs @ 4.43 fps)

Secondary OutFlow Max=3.04 cfs @ 12.15 hrs HW=85.90' TW=81.90' (Dynamic Tailwater) —2=12" HDPE AT DMH8 (Inlet Controls 3.04 cfs @ 3.87 fps)

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021 Page 110

Pond UIS1: UNDERGROUND CHAMBERS #1

Summary for Pond UIS2: UNDERGROUND CHAMBERS #2

37,413 sf, 92.13% Impervious, Inflow Depth > 4.06" for 10-Year event Inflow Area =

Inflow 12,668 cf

3.07 cfs @ 12.14 hrs, Volume= 2.37 cfs @ 12.27 hrs, Volume= Outflow 8,832 cf, Atten= 23%, Lag= 7.9 min

Primary 2.37 cfs @ 12.27 hrs, Volume= 8,832 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 85.22' @ 12.27 hrs Surf.Area= 4,282 sf Storage= 5,302 cf Flood Elev= 84.36' Surf.Area= 4,282 sf Storage= 3,589 cf

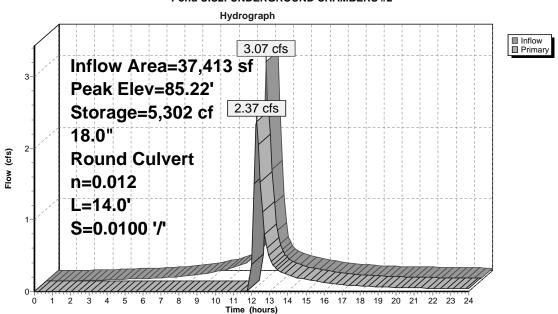
Plug-Flow detention time= 184.2 min calculated for 8,788 cf (69% of inflow) Center-of-Mass det. time= 94.4 min (858.3 - 763.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	83.00'	2,994 cf	48.17'W x 88.64'L x 2.33'H Field A
			9,962 cf Overall - 2,477 cf Embedded = 7,486 cf x 40.0% Voids
#2A	83.50'	2,477 cf	ADS StormTech SC-310 +Cap x 168 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			168 Chambers in 14 Rows
#3	83.50'	50 cf	4.00'D x 4.00'H DMH
		5,521 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	84.36'	18.0" Round 18" HDPE AT DMH3 L= 14.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 84.36' / 84.22' S= 0.0100 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=2.27 cfs @ 12.27 hrs HW=85.20' TW=81.82' (Dynamic Tailwater) 1=18" HDPE AT DMH3 (Barrel Controls 2.27 cfs @ 3.23 fps)


1611-08-Proposed Conditions

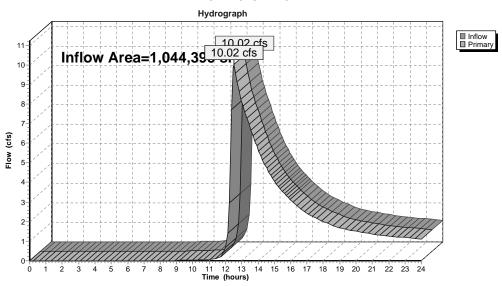
Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 10-Year Rainfall=4.50" Printed 7/19/2021

Page 112

Pond UIS2: UNDERGROUND CHAMBERS #2

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC


Page 113

Summary for Link SP-1: STUDY POINT #1

Inflow Area = Inflow Primary 128,688 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs

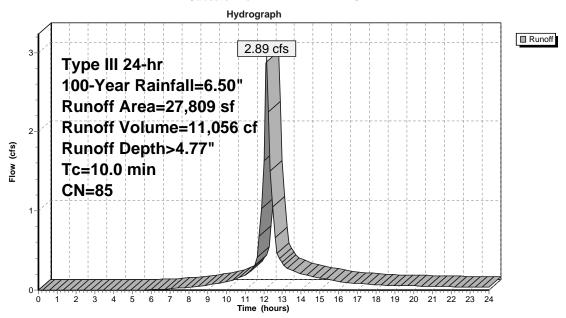
Link SP-1: STUDY POINT #1

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 114

Summary for Subcatchment P-1A: PR. WATERSHED


Runoff 2.89 cfs @ 12.14 hrs, Volume= 11,056 cf, Depth> 4.77"

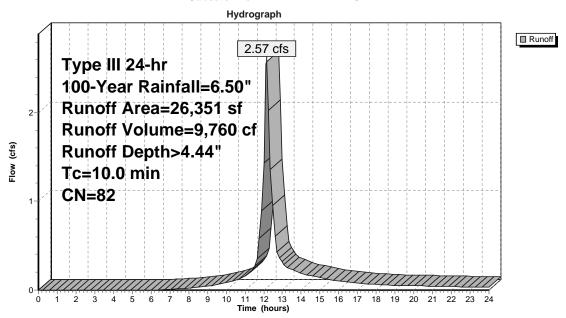
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 100-Year Rainfall=6.50"

	Area (sf)	CN	Description	ı							
	14,724	74	>75% Gras	s cover, Go	ood, HSG C						
*	13,085	98	Impervious	ervious							
	27,809	85	Weighted A	verage							
	14,724		52.95% Pe	rvious Area							
	13,085		47.05% lm	pervious Ar	ea						
_		01			5						
	c Length				Description						
(mii	n) (feet)	(ft/f	t) (ft/sec)	(cfs)							
10	0				Direct Entry	y, MIN. TC					

Direct Entry, MIN. TC

Subcatchment P-1A: PR. WATERSHED

1611-08-Proposed Conditions


Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 116

Summary for Subcatchment P-1B: PR. WATERSHED

Runoff = 2.57 cfs @ 12.14 hrs, Volume= 9,760 cf, Depth> 4.44"

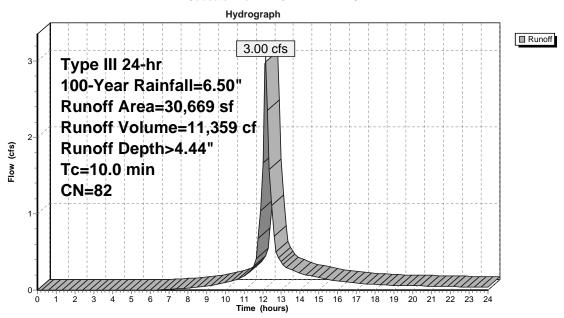
		Area (sf)	CN	Description	scription							
		17,448	74	>75% Gras	s cover, Go	od, HSG C						
,	*	8,903	98	Impervious	ervious							
		26,351	82	Weighted A	Average							
		17,448		66.21% Pe	rvious Area							
		8,903		33.79% Imp	pervious Ar	ea						
_	To (min		Slop (ft/f		Capacity (cfs)	Description						
	10.0)				Direct Entry,	MIN. TC					

Subcatchment P-1B: PR. WATERSHED

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 118

Summary for Subcatchment P-1C: PR. WATERSHED


Runoff = 3.00 cfs @ 12.14 hrs, Volume= 11,359 cf, Depth> 4.44"

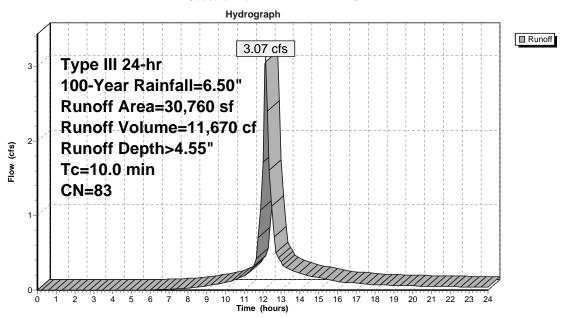
Ar	ea (sf)	CN	Description						
- 2	20,040	74	>75% Gras	s cover, Go	od, HSG C				
* .	10,629	98	Impervious						
	30,669	82	Weighted A	verage					
2	20,040		65.34% Per	vious Area					
•	10,629		34.66% Imp	ervious Are	ea				
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description				
10.0					Direct Entry,	MIN. TC			

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Page 119

Subcatchment P-1C: PR. WATERSHED

1611-08-Proposed Conditions


Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 120

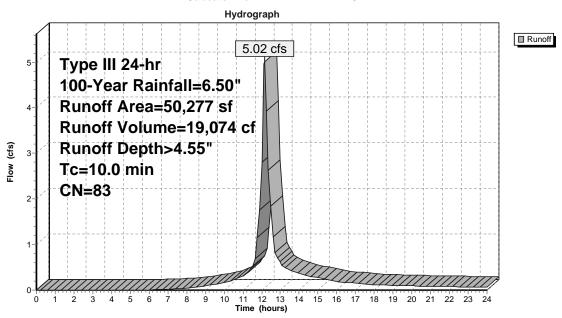
Summary for Subcatchment P-1D: PR. WATERSHED

Runoff = 3.07 cfs @ 12.14 hrs, Volume= 11,670 cf, Depth> 4.55"

Area	(sf) (CN [Description							
19,	029	74 :	75% Gras	s cover, Go	od, HSG C					
* 11,	731	98 I	mpervious							
30,	760	83 \	Veighted A	verage						
19,	029	6	31.86% Per	vious Area						
11,	731	3	88.14% Imp	ervious Are	ea					
	ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0					Direct Entry,	MIN. TC				

Subcatchment P-1D: PR. WATERSHED

1611-08-Proposed Conditions


Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 122

Summary for Subcatchment P-1E: PR. WATERSHED

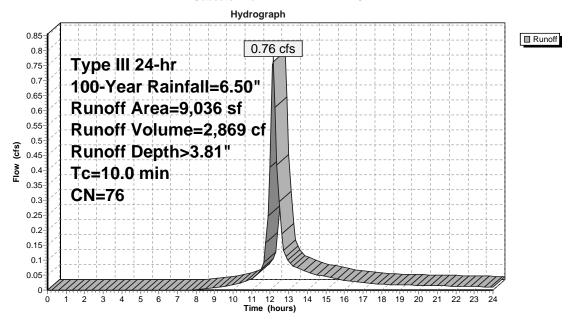
Runoff = 5.02 cfs @ 12.14 hrs, Volume= 19,074 cf, Depth> 4.55"

	Area (sf)	CN	Description							
	31,091	74	>75% Gras	s cover, Go	od, HSG C					
*	19,186	98	Impervious							
	50,277	83	Weighted A	verage						
	31,091		61.84% Pe	rvious Area						
	19,186		38.16% Imp	pervious Ar	ea					
T (mir	c Length	Slop (ft/f		Capacity (cfs)	Description					
10.	0				Direct Entry, M	IN. TC				

Subcatchment P-1E: PR. WATERSHED

1611-08-Proposed Conditions

Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 124


Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

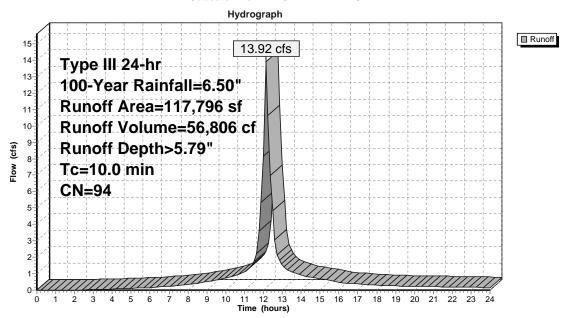
Summary for Subcatchment P-1F: PR. WATERSHED

Runoff = 0.76 cfs @ 12.14 hrs, Volume= 2,869 cf, Depth> 3.81"

	Α	rea (sf)	CN	Description			
		8,156	74	>75% Gras	s cover, Go	ood, HSG C	
*		880	98	Impervious			
		9,036	76	Weighted A	verage		
		8,156		90.26% Pe	rvious Area		
		880		9.74% Impe	ervious Area	a	
_	Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description	
_	10.0			-	-	Direct Entry, MIN. TC	

Subcatchment P-1F: PR. WATERSHED

1611-08-Proposed Conditions


Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 126

Summary for Subcatchment P-1G: PR. WATERSHED

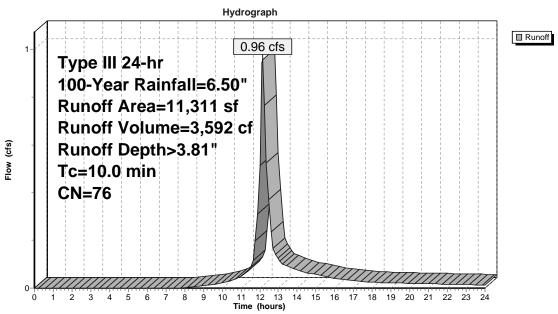
Runoff = 13.92 cfs @ 12.14 hrs, Volume= 56,806 cf, Depth> 5.79"

Area (sf)	CN	Description			
21,862	74	>75% Gras	s cover, Go	od, HSG C	
* 95,934	98	Impervious			
117,796	94	Weighted A	verage		
21,862		18.56% Pe	rvious Area		
95,934		81.44% lm	pervious Ar	ea	
Tc Length (min) (feet)	Slop (ft/		Capacity (cfs)	Description	
10.0				Direct Entry, MIN. TC	

Subcatchment P-1G: PR. WATERSHED

1611-08-Proposed Conditions

Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 128


Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment P-1H: PR. WATERSHED

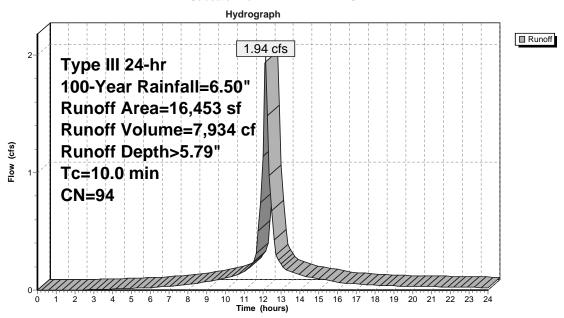
Runoff = 0.96 cfs @ 12.14 hrs, Volume= 3,592 cf, Depth> 3.81"

_		Area (sf)	CN	Description		
		10,351	74	>75% Gras	s cover, Go	ood, HSG C
*		960	98	Impervious		
		11,311	76	Weighted A	Average	
		10,351		91.51% Pe	rvious Area	
		960		8.49% Imp	ervious Area	a
_	To (min)		Slop (ft/f		Capacity (cfs)	Description
	10.0)				Direct Entry, MIN. TC

Subcatchment P-1H: PR. WATERSHED

1611-08-Proposed Conditions

Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 130


Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment P-1I: PR. WATERSHED

Runoff = 1.94 cfs @ 12.14 hrs, Volume= 7,934 cf, Depth> 5.79"

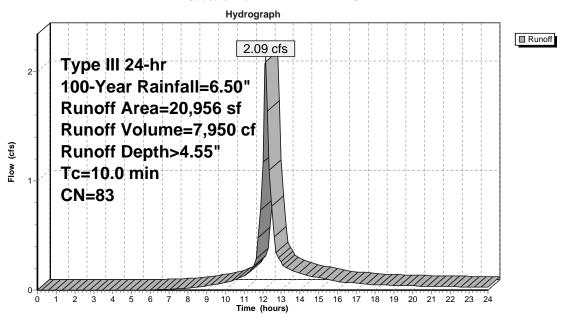
Area	(sf)	CN	Description			
2	,946	74	>75% Gras	s cover, Go	od, HSG C	
13	,507	98	Impervious			
16	,453	94	Weighted A	verage		
2	946		17.91% Pe	rvious Area		
13	507		82.09% Imp	pervious Are	ea	
Tc Le	ength	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
10.0					Direct Entry	, MIN. TC

Subcatchment P-1I: PR. WATERSHED

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 132

Summary for Subcatchment P-2A: PR. WATERSHED


Runoff = 2.09 cfs @ 12.14 hrs, Volume= 7,950 cf, Depth> 4.55"

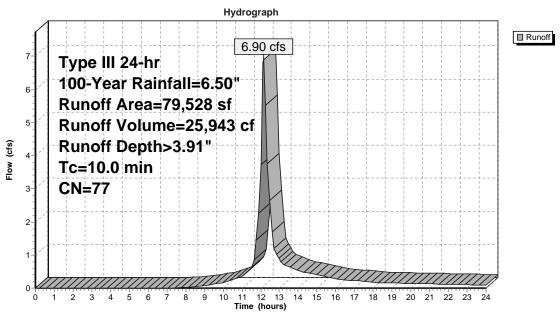
	Α	rea (sf)	CN	Description						
		12,753	74	>75% Gras	s cover, Go	od, HSG C				
1	•	8,203	98	Impervious						
		20,956	83	Weighted A	verage					
		12,753		60.86% Per	rvious Area					
		8,203		39.14% Imp	pervious Are	ea				
	Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description				
•	10.0	1			,	Direct Entry,	MIN. TC			

Prepared by Microsoft
HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Page 133

Subcatchment P-2A: PR. WATERSHED

1611-08-Proposed Conditions


Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 134

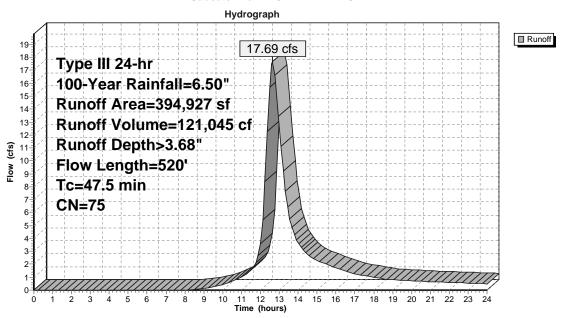
Summary for Subcatchment P-2B: PR. WATERSHED

Runoff = 6.90 cfs @ 12.14 hrs, Volume= 25,943 cf, Depth> 3.91"

	Д	rea (sf)	CN	Description	ı					
		69,830	74	>75% Gras	s cover, Go	od, HSG C				
4		9,698	98	Impervious						
		79,528	77	Weighted A	verage					
		69,830		87.81% Pe	rvious Area					
		9,698		12.19% lm	pervious Ar	ea				
	т.	Lananth	01	- M-116.	0	December				
			Slop			Description				
_	(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)					
	10.0					Direct Entry, M	IIN. TC			

Subcatchment P-2B: PR. WATERSHED

1611-08-Proposed Conditions


Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 136

Summary for Subcatchment P-3: PR. WATERSHED

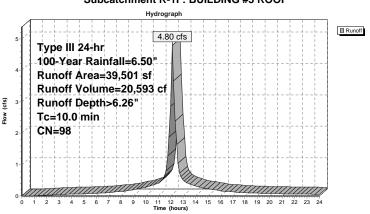
Runoff = 17.69 cfs @ 12.65 hrs, Volume= 121,045 cf, Depth> 3.68"

	Α	rea (sf)	CN	Description		
	2	237,023	77	Woods, Go	od, HSG D	
*		9,383	98	Impervious		
	1	48,521	70	Woods, Go	od, HSG C	
	3	94,927	75	Weighted A	verage	
	3	85,544		97.62% Pe	rvious Area	
		9,383		2.38% Impe	ervious Area	a e e e e e e e e e e e e e e e e e e e
	Tc	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	28.3	100	0.0100	0.06		Sheet Flow, A-B
						Woods: Light underbrush n= 0.400 P2= 3.20"
	1.3	40	0.0100	0.50		Shallow Concentrated Flow, B-C
						Woodland Kv= 5.0 fps
	17.9	380	0.0050	0.35		Shallow Concentrated Flow, C-D
_						Woodland Kv= 5.0 fps
	47.5	520	Total			

Subcatchment P-3: PR. WATERSHED

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 138

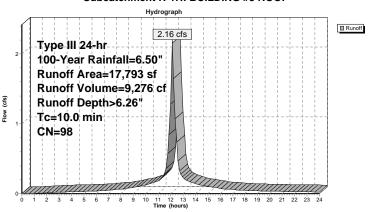

Summary for Subcatchment R-1F: BUILDING #3 ROOF

Runoff = 4.80 cfs @ 12.14 hrs, Volume= 20,593 cf, Depth> 6.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 100-Year Rainfall=6.50"

_	Α	rea (sf)	CN	Description		
*		39,501	98	Roof		
_		39,501		100.00% In	npervious A	rea
	Tc		Slop			Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	10.0					Direct Entry, MIN. TC

Subcatchment R-1F: BUILDING #3 ROOF


Summary for Subcatchment R-1H: BUILDING #3 ROOF

Runoff = 2.16 cfs @ 12.14 hrs, Volume= 9,276 cf, Depth> 6.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 100-Year Rainfall=6.50"

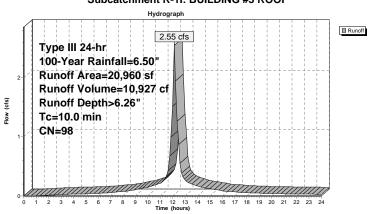
Д	rea (sf)	CN	Description		
*	17,793	98	Roof		
	17,793		100.00% In	npervious A	rea
Tc		Slop			Description
(min)	(feet)	(ft/f	(ft/sec)	(cfs)	
10.0					Direct Entry, MIN. TC

Subcatchment R-1H: BUILDING #3 ROOF

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 140

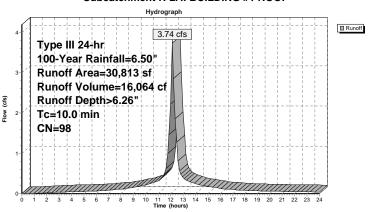

Summary for Subcatchment R-1I: BUILDING #3 ROOF

Runoff = 2.55 cfs @ 12.14 hrs, Volume= 10,927 cf, Depth> 6.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 100-Year Rainfall=6.50"

	P	Area (sf)	CN	Description		
*		20,960	98	Roof		
		20,960		100.00% In	Area	
	Tc (min)	Length (feet)	Slop		Capacity (cfs)	Description
_	10.0		(1011)	(1/360)	(013)	Direct Entry, MIN. TC

Subcatchment R-1I: BUILDING #3 ROOF


Summary for Subcatchment R-2A: BUILDING #1 ROOF

Runoff = 3.74 cfs @ 12.14 hrs, Volume= 16,064 cf, Depth> 6.26"

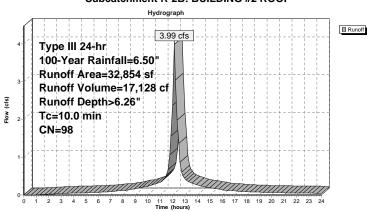
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 100-Year Rainfall=6.50"

_	Д	rea (sf)	CN	Description							
*		30,813	98	Roof							
		30,813 100.00% Impervious Area									
	Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description					
-	10.0		,		, ,	Direct Entry, MIN. TC					

Subcatchment R-2A: BUILDING #1 ROOF

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 142


Summary for Subcatchment R-2B: BUILDING #2 ROOF

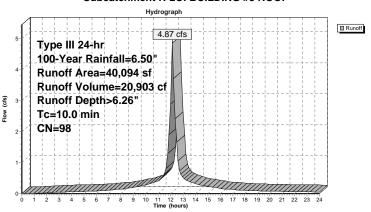
Runoff = 3.99 cfs @ 12.14 hrs, Volume= 17,128 cf, Depth> 6.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 100-Year Rainfall=6.50"

	Α	rea (sf)	CN	Description		
*		32,854	98	Roof		
		32,854		100.00% In	npervious A	rea
	Тс		Slop		Capacity	Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	10.0					Direct Entry, MIN. TC

Subcatchment R-2B: BUILDING #2 ROOF

Prepared by Microsoft
HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC


Summary for Subcatchment R-2C: BUILDING #3 ROOF

Runoff = 4.87 cfs @ 12.14 hrs, Volume= 20,903 cf, Depth> 6.26"

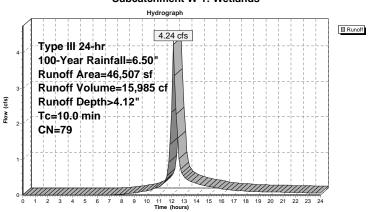
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 100-Year Rainfall=6.50"

	Д	Area (sf)	CN	Description											
*		40,094	98	Roof											
		40,094		100.00% Impervious Area											
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description									
	10.0					Direct Entry, MIN.	TC								

Subcatchment R-2C: BUILDING #3 ROOF

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 144


Summary for Subcatchment W-1: Wetlands

Runoff = 4.24 cfs @ 12.14 hrs, Volume= 15,985 cf, Depth> 4.12"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs Type III 24-hr 100-Year Rainfall=6.50"

Area (s) CN	Description	l		
46,50	7 79	Woods/gra	ss comb., C		
46,50	7	100.00% P	ervious Are	a	
Tc Leng		ve Velocity	Capacity (cfs)	Description	
10.0	-			Direct Entry	y, MIN. TC

Subcatchment W-1: Wetlands

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Page 145

Summary for Pond ES: Offsite Swale to South Culvert

Inflow Area = 445,223 sf, 56.84% Impervious, Inflow Depth > 4.65" for 100-Year event

Inflow 36.05 cfs @ 12.22 hrs, Volume= 172,620 cf

Outflow 12.25 cfs @ 12.75 hrs, Volume= 145,070 cf, Atten= 66%, Lag= 31.5 min

Primary 12.25 cfs @ 12.75 hrs, Volume= 145,070 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 81.06' @ 12.75 hrs Surf.Area= 64,593 sf Storage= 69,615 cf

Plug-Flow detention time= 142.9 min calculated for 145,070 cf (84% of inflow)

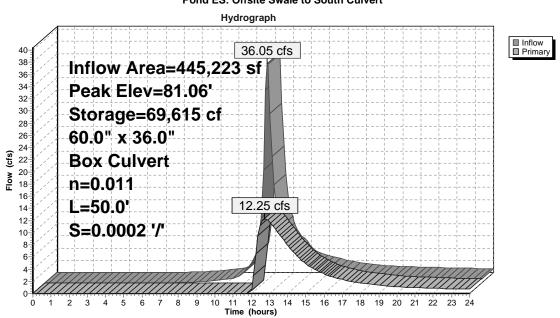
Center-of-Mass det. time= 79.2 min (907.4 - 828.2)

Volume	Invert	Avail	.Storage	Storage Description				
#1	79.00'	.00' 136,108 cf		Custom Stage Data (Irregular)Listed below (Recalc)				
Elevation (feet)		Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
79.00	1	7,000	1,200.0	0	0	17,000		
80.00		7,000	4,000.0	21,808	21,808	1,175,651		
81.00	6	3,900	4,200.0	44,146	65,954	1,306,222		
82.00	70	6,600	4,250.0	70,154	136,108	1,340,108		
Device Rou	uting	Inv	ert Outle	et Devices				

60.0" W x 36.0" H Box Culvert L= 50.0' Box, headwall w/3 square edges, Ke= 0.500 Inlet / Outlet Invert= 80.00' / 79.99' S= 0.0002 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 15.00 sf

Primary OutFlow Max=12.22 cfs @ 12.75 hrs HW=81.06' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Barrel Controls 12.22 cfs @ 3.09 fps)


Primary

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 146

Pond ES: Offsite Swale to South Culvert

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Page 147

Summary for Pond EW: Wetland to East Culvert

394,927 sf, $\,$ 2.38% Impervious, Inflow Depth > $\,$ 3.68" for 100-Year event Inflow Area =

Inflow 121,045 cf

17.69 cfs @ 12.65 hrs, Volume= 1.31 cfs @ 16.82 hrs, Volume= Outflow 46,847 cf, Atten= 93%, Lag= 250.2 min

Primary 1.31 cfs @ 16.82 hrs, Volume= 46,847 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2Peak Elev= 80.92' @ 16.82 hrs Surf.Area= 139,993 sf Storage= 85,504 cf

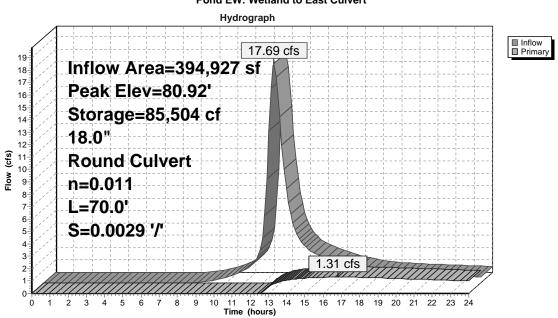
Plug-Flow detention time= 375.1 min calculated for 46,847 cf (39% of inflow)

Center-of-Mass det. time= 252.2 min (1,107.9 - 855.7)

Volume	Invert	Avai	l.Storage	Storage Description)			
#1	80.00' 2		90,435 cf	Custom Stage Data (Irregular)Listed below (Recalc)				
Elevation (feet)		.Area sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
80.00	52	2,000	1,200.0	0	0	52,000		
81.00	149	9,000	2,600.0	96,341	96,341	475,356		
82.00	243	3,000	4,300.0	194,094	290,435	1,408,807		
Device Ro	uting	Inv	vert Outl	et Devices				

n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.77 sf

18.0" Round Culvert L= 70.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 80.30' / 80.10' S= 0.0029 '/' Cc= 0.900 Primary 80.30'


Primary OutFlow Max=1.31 cfs @ 16.82 hrs HW=80.92' TW=0.00' (Dynamic Tailwater) -1=Culvert (Barrel Controls 1.31 cfs @ 2.79 fps)

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 148

Pond EW: Wetland to East Culvert

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Page 149

Summary for Pond OFFSITE: OFFSITE PONDING AREA IN GRASS

11.81 cfs @ 12.28 hrs, Volume= 11.55 cfs @ 12.33 hrs, Volume= Inflow 45,974 cf

Outflow 45,616 cf, Atten= 2%, Lag= 2.8 min

Primary 11.55 cfs @ 12.33 hrs, Volume= 45,616 cf

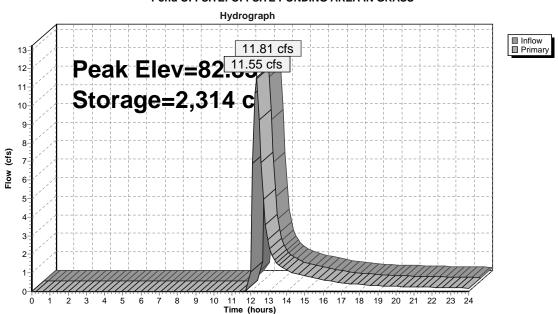
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 82.85' @ 12.33 hrs Surf.Area= 5,905 sf Storage= 2,314 cf

Plug-Flow detention time= 11.5 min calculated for 45,389 cf (99% of inflow)

Center-of-Mass det. time= 7.0 min (853.6 - 846.6)

Volume	Inve	ert Avail.Sto	orage Storage	Description			
#1	82.1	0' 3,2	54 cf OFFSIT	E PONDING ARE	A (Prismatic)Listed below (Re	calc)	
Elevatio		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)			
82.1	10	230	0	0			
83.0	00	7,000	3,254	3,254			
Device	Routing	Invert	Outlet Device	S			
#1	Primary	82.27'				CPP, projecting, no headwall, Ke=	= 0.900
#2 Primar		82.60'	n= 0.012 Cor 30.0' long x Head (feet) 0	rugated PP, smooth 10.0' breadth WE 0.20 0.40 0.60 0.	.40' S= 0.0333 '/' Cc= 0.900 oth interior, Flow Area= 0.28 sf EIR FLOW OVER WALKING P. 80 1.00 1.20 1.40 1.60 0 2.69 2.68 2.69 2.67 2.64		

Primary OutFlow Max=11.27 cfs @ 12.33 hrs HW=82.85' TW=0.00' (Dynamic Tailwater) 1=(3) 8" HDPE (Inlet Controls 1.88 cfs @ 2.23 fps)


-2=WEIR FLOW OVER WALKING PATH (Weir Controls 9.39 cfs @ 1.25 fps)

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 150

Pond OFFSITE: OFFSITE PONDING AREA IN GRASS

Summary for Pond P1C: BIO.RET. #1

48,537 sf, 83.20% Impervious, Inflow Depth > 5.80" for 100-Year event Inflow Area =

Inflow 23,463 cf

5.56 cfs @ 12.14 hrs, Volume= 1.97 cfs @ 12.63 hrs, Volume= Outflow 20,879 cf, Atten= 65%, Lag= 29.5 min

Primary 1.97 cfs @ 12.63 hrs, Volume= 20,879 cf

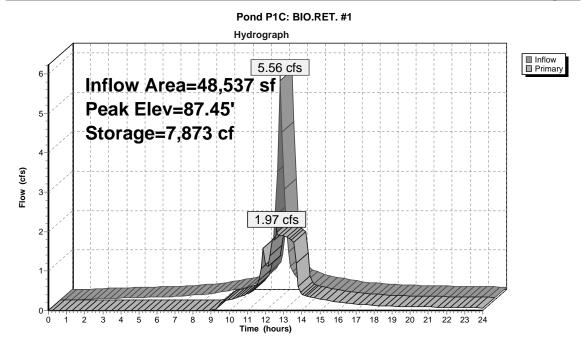
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 87.45° @ 12.50 hrs Surf.Area= 6,051 sf Storage= 7,873 cf Flood Elev= 86.50° Surf.Area= 5,219 sf Storage= 2,505 cf

Plug-Flow detention time= 114.8 min calculated for 20,775 cf (89% of inflow)

Center-of-Mass det. time= 64.2 min (820.6 - 756.4)

Volume	Inv	ert Ava	il.Storage	Storage Description	ı		
#1	86.0	00'	8,156 cf	BIORETENTION #	1 (Irregular)Listed	below (Recalc)	
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
86.0 86.5 87.0	50	4,804 5,219 5.649	272.0 282.0 291.0	0 2,505 2,716	0 2,505 5.221	4,804 5,266 5,701	
87.5		6,093	301.0	2,935	8,156	6,195	
Device	Routing	In	vert Outl	et Devices			
Inlet		Round (2) 6" HDPI / Outlet Invert= 83.9 .012 Corrugated PF	7' / 83.83' S= 0.0	0025 '/ Cc= 0.90	• •		
#2	Device 1						o weir flow at low heads

Primary OutFlow Max=1.94 cfs @ 12.63 hrs HW=87.42' TW=85.33' (Dynamic Tailwater)


1=(2) 6" HDPE (Outlet Controls 1.94 cfs @ 4.95 fps)
1=2=(5) 8" OVERFLOW (Passes 1.94 cfs of 8.04 cfs potential flow)

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021

Page 152

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Page 153

Summary for Pond P1D: BIO.RET. #2

29,104 sf, 64.43% Impervious, Inflow Depth > 5.31" for 100-Year event Inflow Area =

Inflow 12,868 cf

3.12 cfs @ 12.14 hrs, Volume= 1.78 cfs @ 12.61 hrs, Volume= Outflow 11,690 cf, Atten= 43%, Lag= 28.3 min

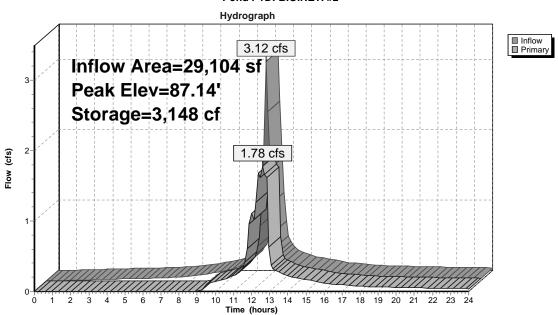
Primary 1.78 cfs @ 12.61 hrs, Volume= 11,690 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 87.14' @ 12.38 hrs Surf.Area= 3,581 s Storage= 3,148 cf Flood Elev= 86.50' Surf.Area= 2,628 sf Storage= 1,146 cf

Plug-Flow detention time= 90.6 min calculated for 11,632 cf (90% of inflow) Center-of-Mass det. time= 46.4 min (814.8 - 768.4)

Volume	Invert Ava	ail.Storage	Storage Description	า									
#1	86.00'	1,686 cf		ETENTION (Irregular)Listed below (Recalc)									
#2	86.00'	2,826 cf	BIORETENTION (I	rregular)Listed bel	low (Recalc)								
Elevation (feet)	Surf.Area (sq-ft)		Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)								
86.00	688	169.0	0	0	688								
87.00	1,281	203.0	969	969	1,712								
87.50	1,592	212.0	717	1,686	2,026								
Elevation (feet)	Surf.Area (sq-ft)		Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)								
86.00	1.285		0	0	1,285								
87.00	2.098		1.675	1.675	4,174								
87.50	2,512		1,151	2,826	4,592								
Device Ro	uting I	nvert Outl	et Devices										
#1 Dri	mary 8	3 07' 6 0"	Pound (2) 6" HDP	E Y 2 00 1 - 54 0'	CDD mitered to	conform to fill Ko= 0.700							

6.0" Round (2) 6" HDPE X 2.00 L= 54.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 83.97' / 83.83' S= 0.0026 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.20 sf 8.0" Horiz. (4) 8" OVERFLOW X 4.00 C= 0.600 Limited to weir flow at low heads


1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021

Page 154

Primary OutFlow Max=1.76 cfs @ 12.61 hrs HW=87.00' TW=85.32' (Dynamic Tailwater) 1=(2) 6" HDPE (Outlet Controls 1.76 cfs @ 4.49 fps) 2=(4) 8" OVERFLOW (Passes 1.76 cfs of 4.74 cfs potential flow)

Pond P1D: BIO.RET. #2

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Page 155

Summary for Pond P1E: Wet Basin #1

27,809 sf, 47.05% Impervious, Inflow Depth > 4.77" for 100-Year event Inflow Area =

2.89 cfs @ 12.14 hrs, Volume= 2.63 cfs @ 12.21 hrs, Volume= Inflow

Outflow 11,024 cf, Atten= 9%, Lag= 4.0 min

Primary 2.63 cfs @ 12.21 hrs, Volume= 11,024 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Starting Elev= 81.50' Surf.Area= 3,408 sf Storage= 3,980 cf Peak Elev= 81.67' @ 12.21 hrs Surf.Area= 3,584 sf Storage= 4,565 cf (584 cf above start)

Flood Elev= 81.50' Surf.Area= 3,408 sf Storage= 3,980 cf

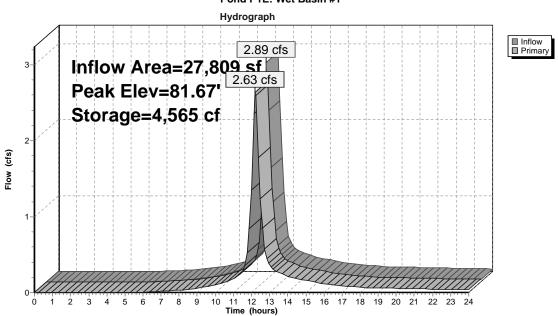
Plug-Flow detention time= 178.4 min calculated for 7,044 cf (64% of inflow) Center-of-Mass det. time= 5.6 min (806.4 - 800.7)

Volume	Invert	Avai	I.Storage	Storage Description	1	
#1	80.00'		7,924 cf	Custom Stage Dat	a (Irregular) Listed	below (Recalc)
Elevation (feet)		.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
80.00		1,930	299.0	0	0	1,930
81.00	2	2,909	337.0	2,403	2,403	3,879
82.00	:	3,947	355.0	3,415	5,818	4,929
82.50	4	4,486	364.0	2,107	7,924	5,475
Dovice Po			vort Outl			

Device Routing Invert Outlet Devices

15.0' long x 12.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Primary 81.50

Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64


Primary OutFlow Max=2.52 cfs @ 12.21 hrs HW=81.66' TW=80.64' (Dynamic Tailwater) -1=Broad-Crested Rectangular Weir (Weir Controls 2.52 cfs @ 1.04 fps)

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 156

Pond P1E: Wet Basin #1

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Summary for Pond P1F: Wet Basin #2

320,630 sf, 68.86% Impervious, Inflow Depth > 3.74" for 100-Year event Inflow Area = 100,048 cf

23.91 cfs @ 12.17 hrs, Volume= 23.21 cfs @ 12.22 hrs, Volume= Outflow 99,762 cf, Atten= 3%, Lag= 3.4 min

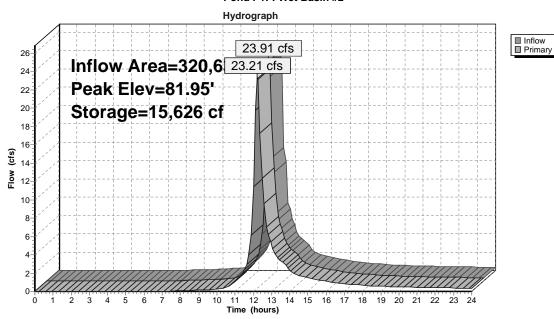
Primary 23.21 cfs @ 12.22 hrs, Volume= 99,762 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Starting Elev= 81.50' Surf.Area= 10,650 sf Storage= 10,212 cf Peak Elev= 81.95' @ 12.22 hrs Surf.Area= 13,696 sf Storage= 15,626 cf (5,414 cf above start)

Flood Elev= 81.50' Surf.Area= 10,650 sf Storage= 10,212 cf

Plug-Flow detention time= 72.7 min calculated for 89,551 cf (90% of inflow) Center-of-Mass det. time= 5.3 min (824.4 - 819.1)

Volume	Inve	ert Avai	I.Storage	Storage Description			
#1	80.0	00'	24,130 cf	Custom Stage Data	(Irregular)Listed	below (Recalc)	
Elevation		Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
80.0	00	3,826	408.0	0	0	3,826	
81.0	00	7,690	1,455.0	5,647	5,647	159,050	
82.0	00	14,091	2,271.0	10,730	16,377	401,005	
82.5	50	16,964	2,177.0	7,753	24,130	434,296	
Device	Routing	In	vert Outle	et Devices			
#1	Primary	81	.50' 15.0	long x 7.0' breadth	Broad-Crested	Rectangular We	ir
	•			d (feet) 0.20 0.40 0.0			80 2.00 2.50 3.00 3.50 4.00 4.50 5.00
					2.70 2.68 2.68	2.67 2.66 2.65	5 2.65 2.65 2.66 2.65 2.66 2.68 2.70 2.73
			2.78				
#2	Primary	81		long x 12.0 breadt			eir
				d (feet) 0.20 0.40 0.0			
			Coe	f. (English) 2.57 2.62	2.70 2.67 2.66	2.67 2.66 2.64	ļ


1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021

Page 158

Primary OutFlow Max=22.64 cfs @ 12.22 hrs HW=81.94' TW=80.67' (Dynamic Tailwater) 1=Broad-Crested Rectangular Weir (Weir Controls 11.15 cfs @ 1.69 fps) -2=Broad-Crested Rectangular Weir (Weir Controls 11.50 cfs @ 1.75 fps)

Pond P1F: Wet Basin #2

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Page 159

Summary for Pond P1G: Wet Basin #3

50,277 sf, 38.16% Impervious, Inflow Depth > 11.05" for 100-Year event Inflow Area = 8.56 cfs @ 12.14 hrs, Volume= 6.92 cfs @ 12.28 hrs, Volume= Inflow Outflow 45,849 cf, Atten= 19%, Lag= 8.3 min

Primary 6.92 cfs @ 12.28 hrs, Volume= 45,849 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Starting Elev= 81.50° Surf.Area= 7.082 sf Storage= 6.991 cf Peak Elev= 82.14° @ 12.28 hrs Surf.Area= 9.673 sf Storage= 12.348 cf (5.357 cf above start)

Flood Elev= 81.50' Surf.Area= 7,082 sf Storage= 6,991 cf

Plug-Flow detention time= 111.4 min calculated for 38,664 cf (84% of inflow) Center-of-Mass det. time= 16.0 min (845.9 - 829.8)

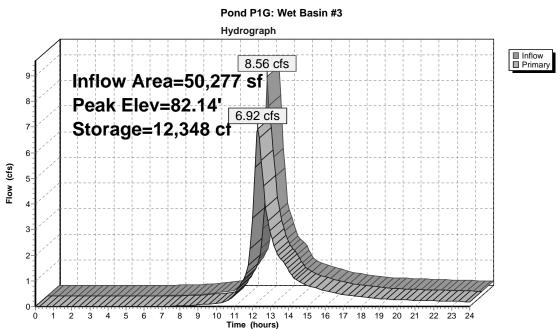
Volume	Invert	Avai	I.Storage	Storage Description	า	
#1	80.00' 16,095 cf		Custom Stage Data (Irregular)Listed below (Recalc)			
Elevation	Surf	.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	((sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
80.00	:	2,647	420.0	0	0	2,647
81.00		5,312	1,188.0	3,903	3,903	100,924
82.00		9,107	1,389.0	7,125	11,028	142,163
82.50	11	1,198	1,400.0	5,067	16,095	144,702

Device Routing Invert Outlet Devices

#1 Primary

5.0' long x 6.0' breadth Broad-Crested Rectangular Weir

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50


Coef. (English) 2.37 2.51 2.70 2.68 2.68 2.67 2.65 2.65 2.65 2.66 2.66 2.67 2.69 2.72 2.76

Primary OutFlow Max=6.74 cfs @ 12.28 hrs HW=82.13' TW=80.78' (Dynamic Tailwater) 1=Broad-Crested Rectangular Weir (Weir Controls 6.74 cfs @ 2.14 fps)

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021

Page 160

1611-08-Proposed Conditions

Prepared by Microsoft

HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Summary for Pond P2: SURFACE BASINS

183,289 sf, 61.90% Impervious, Inflow Depth > 5.24" for 100-Year event Inflow Area = 19.50 cfs @ 12.14 hrs, Volume= 13.88 cfs @ 12.28 hrs, Volume= Inflow 80,038 cf Outflow 60,562 cf, Atten= 29%, Lag= 8.8 min

Primary 2.06 cfs @ 12.24 hrs, Volume= 14,588 cf 11.81 cfs @ 12.28 hrs, Volume= 45,974 cf Secondary =

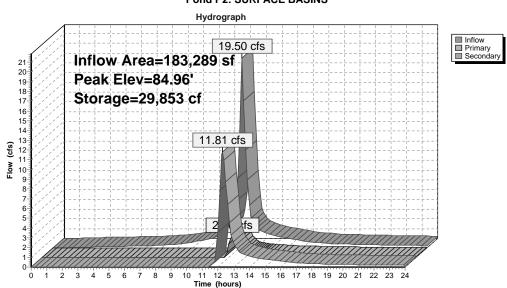
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Filev= 84.96' @ 12.29 hrs Surf.Area= 25,820 sf Storage= 29,853 cf Flood Elev= 84.50' Surf.Area= 22,488 sf Storage= 18,822 cf

Plug-Flow detention time= 164.2 min calculated for 60,261 cf (75% of inflow) Center-of-Mass det. time= $81.4 \, \text{min}$ (852.5 - 771.1)

Inver	rt Avail.Storage		Storage Description			
83.50	' '	44,950 cf	Custom Stage Data	(Irregular)Listed	below (Recalc)	
	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
50	15,229	2,415.0	0	0	15,229	
	18,845	2,424.0	8,502	8,502	18,900	
50	22,488	2,434.0	10,320	18,822	22,952	
00	26,145	2,443.0	12,147	30,969	26,651	
50	29,817	2,452.0	13,980	44,950	30,365	
Routing	In	vert Outle	et Devices			
Primary	82					
)
Device 1	84	.50' 8.0 "	Horiz. (2) 8" OVERFI	LOW X 2.00 C=	0.600 Limited to	weir flow at low heads
Secondary	/ 84	.50' 15.0	long x 5.0 breadth	RIP-RAP OVER	FLOW	
·		5.50 Coef	. (English) 2.34 2.50			
	83.50 on S bit) 50 00 60 00 60 Routing Primary	83.50' n Surf.Area st) (sq-ft) 50 15,229 00 18,845 50 22,488 00 26,145 50 29,817 Routing In Primary 82 Device 1 84	83.50' 44,950 cf on Surf.Area Perim. ot) (sq-ft) (feet) 50 15,229 2,415.0 00 18,845 2,424.0 00 26,145 2,443.0 00 26,145 2,443.0 00 29,817 2,452.0 Routing Invert Outle Primary 82.40' 6.0" Inlet n= 0 Device 1 84.50' 8.0" Secondary 84.50' 15.0' Heac 5.50 Coef	83.50' 44,950 cf Custom Stage Data on Surf.Area Perim. Inc.Store (sq-ft) (feet) (cubic-feet) 60 15,229 2,415.0 0 00 18,845 2,424.0 8,502 60 22,488 2,434.0 10,320 00 26,145 2,443.0 12,147 60 29,817 2,452.0 13,980 Routing Invert Outlet Devices Primary 82.40' 6.0" Round (2) 6" PVC X Inlet / Outlet Invert= 82.40 n= 0.010 PVC, smooth int Secondary 84.50' 8.0" Horiz. (2) 8" OVERF 15.0' long x 5.0' breadth Head (feet) 0.20 0.40 0.15	83.50' 44,950 cf Custom Stage Data (Irregular)Listed (Irregular)Li	83.50' 44,950 cf Custom Stage Data (Irregular)Listed below (Recalc) on Surf.Area Perim. Inc.Store Cum.Store Wet.Area ett) (sq-ft) (feet) (cubic-feet) (cubic-feet) (sq-ft) 50 15,229 2,415.0 0 0 0 15,229 00 18,845 2,424.0 8,502 8,502 18,900 50 22,488 2,434.0 10,320 18,822 22,952 00 26,145 2,443.0 12,147 30,969 26,651 50 29,817 2,452.0 13,980 44,950 30,365 Routing Invert Outlet Devices Primary 82.40' 6.0" Round (2) 6" PVC X 2.00 L= 140.0' CPP, square edg Inlet / Outlet Invert= 82.40' / 81.00' S= 0.0100'/' Cc= 0.900 n= 0.010 PVC, smooth interior, Flow Area= 0.20 sf Device 1 84.50' 8.0" Horiz. (2) 8" OVERFLOW X 2.00 C= 0.600 Limited to Secondary 84.50' 15.0' long x 5.0' breadth RIP-RAP OVERFLOW Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.8 5.50 Coef. (English) 2.34 2.50 2.70 2.68 2.68 2.66 2.65 2.65

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC


Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021

Page 162

Primary OutFlow Max=2.06 cfs @ 12.24 hrs HW=84.95' TW=0.00' (Dynamic Tailwater) 1=(2) 6" PVC (Barrel Controls 2.06 cfs @ 5.25 fps) 2=(2) 8" OVERFLOW (Passes 2.06 cfs of 2.25 cfs potential flow)

Secondary OutFlow Max=11.32 cfs @ 12.28 hrs HW=84.94' TW=82.84' (Dynamic Tailwater) 13=RIP-RAP OVERFLOW (Weir Controls 11.32 cfs @ 1.70 fps)

Pond P2: SURFACE BASINS

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Page 163

Summary for Pond UIS1: UNDERGROUND CHAMBERS #1

Inflow Area = Inflow

Outflow = Primary 52,280 cf

11.51 cfs @ 12.17 hrs, Volume= 3.56 cfs @ 12.17 hrs, Volume= Secondary = 27,215 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 86.28° @ 12.17 hrs Surf.Area= 10,861 sf Storage= 13,521 cf Flood Elev= 84.36' Surf.Area= 10,861 sf Storage= 8,753 cf

Plug-Flow detention time= 93.0 min calculated for 79,495 cf (89% of inflow) Center-of-Mass det. time= 42.8 min (830.2 - 787.4)

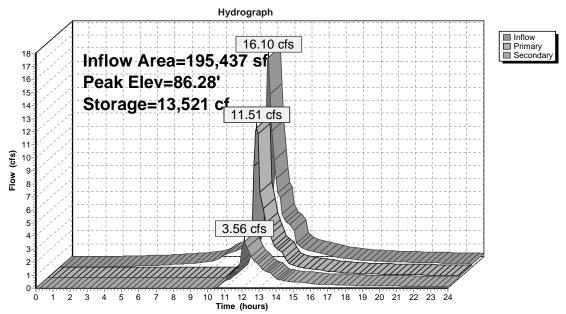
Volume	Invert	Avail.Storage	Storage Description
#1B	83.00'	5,546 cf	8.17'W x 928.80'L x 2.33'H Field B
			17,699 cf Overall - 3,833 cf Embedded = 13,866 cf x 40.0% Voids
#2B	83.50'	3,833 cf	ADS_StormTech SC-310 +Cap x 260 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			260 Chambers in 2 Rows
#3C	83.00'	1,094 cf	14.83'W x 102.88'L x 2.33'H Field C
			3,561 cf Overall - 826 cf Embedded = 2,735 cf x 40.0% Voids
#4C	83.50'	826 cf	ADS_StormTech SC-310 +Cap x 56 Inside #3
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			56 Chambers in 4 Rows
#5D	83.00'	1,244 cf	
			4,054 cf Overall - 943 cf Embedded = 3,110 cf x 40.0% Voids
#6D	83.50'	943 cf	ADS_StormTech SC-310 +Cap x 64 Inside #5
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			64 Chambers in 4 Rows
#7	83.50'	50 cf	4.00'D x 4.00'H DMH
		13,537 cf	Total Available Storage

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021

Page 164


Storage Group B created with Chamber Wizard Storage Group C created with Chamber Wizard Storage Group D created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	84.36'	24.0" Round 24" HDPE AT DMH12 L= 27.0' CPP, projecting, no headwall, Ke= 0.900
	-		Inlet / Outlet Invert= 84.36' / 84.09' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 3.14 sf
#2	Secondary	84.36'	12.0" Round 12" HDPE AT DMH8 L= 26.0' CPP, projecting, no headwall, Ke= 0.900
	-		Inlet / Outlet Invert= 84.36' / 84.10' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=11.15 cfs @ 12.17 hrs HW=86.23' TW=81.92' (Dynamic Tailwater) -1=24" HDPE AT DMH12 (Barrel Controls 11.15 cfs @ 4.73 fps)

Secondary OutFlow Max=3.50 cfs @ 12.17 hrs HW=86.23' TW=82.09' (Dynamic Tailwater) —2=12" HDPE AT DMH8 (Inlet Controls 3.50 cfs @ 4.46 fps)

Pond UIS1: UNDERGROUND CHAMBERS #1

1611-08-Proposed Conditions

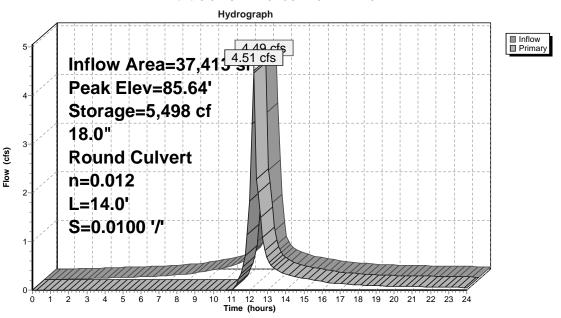
Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 166

Summary for Pond UIS2: UNDERGROUND CHAMBERS #2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs / 2 Peak Elev= 85.64' @ 12.22 hrs Surf.Area= 4,282 sf Storage= 5,498 cf Flood Elev= 84.36' Surf.Area= 4,282 sf Storage= 3,589 cf

Plug-Flow detention time= 151.5 min calculated for 14,905 cf (79% of inflow) Center-of-Mass det. time= 77.4 min (833.9 - 756.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	83.00'	2,994 cf	48.17'W x 88.64'L x 2.33'H Field A
			9,962 cf Overall - 2,477 cf Embedded = 7,486 cf x 40.0% Voids
#2A	83.50'	2,477 cf	ADS_StormTech SC-310 +Cap x 168 Inside #1
			Effective Size= 28.9 "W x 16.0 "H => 2.07 sf x 7.12 'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			168 Chambers in 14 Rows
#3	83.50'	50 cf	4.00'D x 4.00'H DMH
		5,521 cf	Total Available Storage


Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	84.36'	18.0" Round 18" HDPE AT DMH3 L= 14.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 84.36' / 84.22' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 1.77 sf

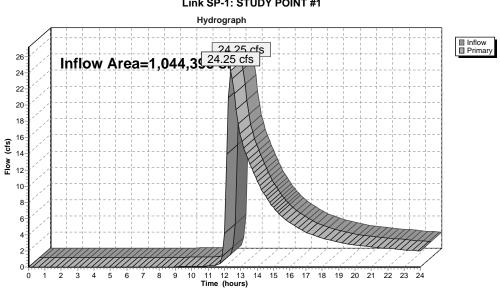
Primary OutFlow Max=4.27 cfs @ 12.22 hrs HW=85.60' TW=81.94' (Dynamic Tailwater) 1=18" HDPE AT DMH3 (Barrel Controls 4.27 cfs @ 3.72 fps)

Page 167

Pond UIS2: UNDERGROUND CHAMBERS #2

1611-08-Proposed Conditions

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC


Type III 24-hr 100-Year Rainfall=6.50" Printed 7/19/2021 Page 168

Summary for Link SP-1: STUDY POINT #1

1,044,395 sf, 36.78% Impervious, Inflow Depth > 2.99" for 100-Year event 24.25 cfs @ 12.39 hrs, Volume= 260,071 cf 260,071 cf, Atten= 0%, Lag= 0.0 min Inflow Area = Inflow Primary

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.12 hrs

Link SP-1: STUDY POINT #1

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

TABLE OF CONTENTS

Project Reports

- Routing Diagram
- 2 Rainfall Events Listing
- 3 Ground Covers (all nodes)

2-Year Event

- 4 Subcat P-1A: PR. WATERSHED
- 6 Subcat P-1B: PR. WATERSHED
- 8 Subcat P-1C: PR. WATERSHED
- 10 Subcat P-1D: PR. WATERSHED
- 12 Subcat P-1E: PR. WATERSHED
- 14 Subcat P-1F: PR. WATERSHED
- 16 Subcat P-1G: PR. WATERSHED
- 18 Subcat P-1H: PR. WATERSHED
- Subcat P-1I: PR. WATERSHED
- Subcat P-2A: PR. WATERSHED
- Subcat P-2B: PR. WATERSHED 24
- Subcat P-3: PR. WATERSHED 26
- Subcat R-1F: BUILDING #3 ROOF 28
- 29 Subcat R-1H: BUILDING #3 ROOF
- 30 Subcat R-1I: BUILDING #3 ROOF Subcat R-2A: BUILDING #1 ROOF 31
- 32 Subcat R-2B: BUILDING #2 ROOF
- Subcat R-2C: BUILDING #3 ROOF
- Subcat W-1: Wetlands
- Pond ES: Offsite Swale to South Culvert
- Pond EW: Wetland to East Culvert
- Pond OFFSITE: OFFSITE PONDING AREA IN GRASS
- 41 Pond P1C: BIO.RET. #1
- 43 Pond P1D: BIO.RET. #2
- 45 Pond P1E: Wet Basin #1
- 47 Pond P1F: Wet Basin #2 49 Pond P1G: Wet Basin #3

1611-08-Proposed Conditions

Prepared by Microsoft

HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

- 51 Pond P2: SURFACE BASINS
- 53 Pond UIS1: UNDERGROUND CHAMBERS #1
- 56 Pond UIS2: UNDERGROUND CHAMBERS #2
- 58 Link SP-1: STUDY POINT #1

10-Year Event

- 59 Subcat P-1A: PR. WATERSHED
- 61 Subcat P-1B: PR. WATERSHED
- 63 Subcat P-1C: PR. WATERSHED
- Subcat P-1D: PR. WATERSHED Subcat P-1E: PR. WATERSHED 67
- 69 Subcat P-1F: PR. WATERSHED
- 71 Subcat P-1G: PR. WATERSHED
- 73 Subcat P-1H: PR. WATERSHED
- 75 Subcat P-1I: PR. WATERSHED
- Subcat P-2A: PR. WATERSHED 77
- 79 Subcat P-2B: PR. WATERSHED
- 81 Subcat P-3: PR. WATERSHED 83 Subcat R-1F: BUILDING #3 ROOF
- Subcat R-1H: BUILDING #3 ROOF
- Subcat R-1I: BUILDING #3 ROOF 85
- Subcat R-2A: BUILDING #1 ROOF 86
- Subcat R-2B: BUILDING #2 ROOF 87
- Subcat R-2C: BUILDING #3 ROOF 88
- 89 Subcat W-1: Wetlands
- 90 Pond ES: Offsite Swale to South Culvert
- 92 Pond EW: Wetland to East Culvert
- 94 Pond OFFSITE: OFFSITE PONDING AREA IN GRASS
- 96 Pond P1C: BIO.RET. #1
- 98 Pond P1D: BIO.RET. #2
- 100 Pond P1E: Wet Basin #1
- 102 Pond P1F: Wet Basin #2
- 104 Pond P1G: Wet Basin #3 106 Pond P2: SURFACE BASINS
- 108 Pond UIS1: UNDERGROUND CHAMBERS #1

Table of Contents Printed 7/19/2021

Prepared by Microsoft HydroCAD® 10.10-5a s/n 02881 © 2020 HydroCAD Software Solutions LLC

- 111 Pond UIS2: UNDERGROUND CHAMBERS #2
- 113 Link SP-1: STUDY POINT #1

100-Year Event

- 114 Subcat P-1A: PR. WATERSHED
- 116 Subcat P-1B: PR. WATERSHED
- 118 Subcat P-1C: PR. WATERSHED
- 120 Subcat P-1D: PR. WATERSHED
- 122 Subcat P-1E: PR. WATERSHED
- 124 Subcat P-1F: PR. WATERSHED
- 126 Subcat P-1G: PR. WATERSHED
- 128 Subcat P-1H: PR. WATERSHED 130 Subcat P-1I: PR. WATERSHED

- 132 Subcat P-2A: PR. WATERSHED
- 134 Subcat P-2B: PR. WATERSHED
- 136 Subcat P-3: PR. WATERSHED
- 138 Subcat R-1F: BUILDING #3 ROOF
- 139 Subcat R-1H: BUILDING #3 ROOF
- 140 Subcat R-1I: BUILDING #3 ROOF 141 Subcat R-2A: BUILDING #1 ROOF
- 142 Subcat R-2B: BUILDING #2 ROOF
- 143 Subcat R-2C: BUILDING #3 ROOF
- 144 Subcat W-1: Wetlands
- 145 Pond ES: Offsite Swale to South Culvert
- 147 Pond EW: Wetland to East Culvert
- 149 Pond OFFSITE: OFFSITE PONDING AREA IN GRASS
- 151 Pond P1C: BIO.RET. #1
- 153 Pond P1D: BIO.RET. #2
- 155 Pond P1E: Wet Basin #1
- 157 Pond P1F: Wet Basin #2 159 Pond P1G: Wet Basin #3
- 161 Pond P2: SURFACE BASINS
- 163 Pond UIS1: UNDERGROUND CHAMBERS #1
- 166 Pond UIS2: UNDERGROUND CHAMBERS #2
- 168 Link SP-1: STUDY POINT #1

SECTION 5.0 - APPENDIX

				Computation Sheet	
Title	MA DEP Standa	ard Calculations	E	Зу	NCD
Project	200 Quannapowitt			Chk'd	TJW
Location	200 Quannapowitt F	Pkwy Wakefield, MA	A	Apprv'd	TJW
Date	March 16, 2021			_	

Stormwater Recharge/Water Quality Volume Table

 $Rv = F*A_{IMP}$

Revised

 $A_{WQ} = D_{WQ} *A_{IMP}$

 $\mathbf{R}\mathbf{v} = \mathbf{R}\mathbf{e}$ quired Recharge Volume, expressed in ft³, cubic yards or acre-feet

August 3, 2021

F = Target Depth Factor associated with each Hydraulic Soil Group

 A_{WQ} = Required Water Quality Treatment Volume, expressed in ft³

 $D_{WQ} = Water Quality Depth$

 A_{IMP} = Impervious Area (pavement & rooftop area on site)

							Recharge Required		Water Quality V	olume Required
Watershed	Aron (Sq. Et.)	Landscaped	Impe	Impervious Area (Square Feet)			Impervious Area		D (Inch)	4
watersned	Area (Sq. Ft.)	Landscaped	HSG B (F=0.35)	HSG C (F=0.25)	HSG D (F=0.10)	F Avg. (Inches)	(Feet)	$\mathbf{Rv} (ft^3)$	D_{WQ} (Inch)	A_{WQ}
P-1A	27,809	14,724	0	13,085	0	0.25	13,085	273	1.0	1,090
P-1B	26,351	17,448	0	8,903	0	0.25	8,903	185	1.0	742
P-1C	30,669	20,040	0	10,629	0	0.25	10,629	221	1.0	886
P-1D	30,760	19,029	0	11,731	0	0.25	11,731	244	1.0	978
P-1E	50,277	31,091	0	19,186	0	0.25	19,186	400	1.0	1,599
W-1	46,507	46,507	0	0	0	0.00	0	0	1.0	0
P-1F	9,036	8,156	0	880	0	0.25	880	18	1.0	73
P-1G	117,796	21,862	0	95,934	0	0.25	95,934	1,999	1.0	7,995
P-1H	11,311	10,351	0	960	0	0.25	960	20	1.0	80
P-1I	16,453	2,946	0	13,507	0	0.25	13,507	281	1.0	1,126
R-1F	39,501	0	0	39,501	0	0.25	39,501	823	1.0	3,292
R-1H	17,793	0	0	17,793	0	0.25	17,793	371	1.0	1,483
R-1I	20,960	0	0	20,960	0	0.25	20,960	437	1.0	1,747
P-2A	20,956	20,956	0	0	0	0.00	0	0	1.0	0
P-2B	79,528	69,830	0	9,698	0	0.25	9,698	202	1.0	808
R-2A	30,813	0	0	30,813	0	0.25	30,813	642	1.0	2,568
R-2B	32,854	0	0	32,854	0	0.25	32,854	684	1.0	2,738
R-2C	40,094	0	0	40,094	0	0.25	40,094	835	1.0	3,341
P-3	394,927	385,544	0	9,383	0	0.25	9,383	195	1.0	782
Total	1,044,395	668,484	0	375,911	0		375,911	7,831		31,326

		Computation Shee	et
Title	MA DEP Standard Calculations	Ву	NCD
Project	200 Quannapowitt	Chk'd	TJW
Location	200 Quannapowitt Pkwy Wakefield, MA	Apprv'd	TJW
Date	March 16, 2021		·

Stormwater Recharge Summary

	Required (cf)	Provided (cf)	
ARv =	273	0	Wet Basin #1 (Below Outlet Inv.=81.50) [P-1A]
ARv =	651	0	Wet Basin #2 (Below Outlet Inv.=81.50) [P-1B, P-1C, P-1D]
ARv =	400	0	Wet Basin #3 (Below Outlet Inv.=81.50) [P-1E]
ARv =	1,999	8,078	Infiltration Chambers #1 (Below Outlet Inv.=84.00) [P-1G]
ARv =	843	3,539	Infiltration Chambers#2 (Below Outlet Inv.=84.00) [P-11, R-11]
ARv =	841	2,505	Bioretention #1(Below Outlet Inv.=86.50) [P-1F, R-1F]
ARv =	391	1,146	Bioretention #2 (Below Outlet Inv.=86.50) [P-1H, R-1H]
ARv =	2,364	18,822	Surface Infiltration Basin (Below Outlet Inv.=84.50) [P-2B, R-2A, R-2B, R-2C]
ARv =	7,761	34,090	Total
Capture Area Adjustment * =	9,716		

*Capture Area Adjustment	
Total Impervious Area	375,911
Site Impervious area draining to Recharge BMPs	
Ratio	1.24
Adjusted ARv	9,716

Water Quality Summary

	Required (cf)	Provided (cf)	
$A_{WQ} =$	1,090	3,980	Wet Basin #1 (Below Outlet Inv.=81.50) [P-1A]
$A_{WQ} =$	2,605	10,212	Wet Basin #2 (Below Outlet Inv.=81.50) [P-1B, P-1C, P-1D]
$A_{WQ} =$	1,599	6,991	Wet Basin #3 (Below Outlet Inv.=81.50) [P-1E]
$A_{WQ} =$	7,995	8,078	Infiltration Chambers #1 (Below Outlet Inv.=84.00) [P-1G]
$A_{WQ} =$	2,872	3,539	Infiltration Chambers #2 (Below Outlet Inv.=84.00) [P-11, R-11]
$A_{WQ} =$	3,365	2,505	Bioretention #1(Below Outlet Inv.=86.50) [P-1F, R-1F]
$A_{WQ} =$	1,563	1,146	Bioretention #2 (Below Outlet Inv.=86.50) [P-1H, R-1H]
$A_{WQ} =$	9,455	18,822	Surface Infiltration Basin (Below Outlet Inv.=84.50) [P-2B, R-2A, R-2B, R-2C]
$A_{WQ} =$	30,544	55,273	Total
Capture Area Adjustment * =	32,128		

*Capture Area Adjustment	
Total Impervious Area	375,911
Site Impervious area draining to Treatment BMPs	
Ratio	1.03
Adjusted Awq	32,128

		Computation 5	heet
Title	MA DEP Standard Calculations	Ву	NCD
Project	200 Quannapowitt	Chk'd	TJW
Location	200 Quannapowitt Pkwy Wakefield, MA	Apprv'd	TJW
Date	March 16, 2021		

Draindown Within 72 Hours

Time_{drawdown}=(Rv) (1/Design Infiltration Rate in inches per hour) (Conversion for inches to feet) (1/bottom area in feet)

Infiltration Chambers #1 (HSG C - Silty Loam)	
Infiltration Rate (in/Hr)=	0.27
Bottom Area (ft^2) =	10,861
Infiltration Volume (ft ³) =	8,078
Time _{drawdown} (Hours)=	33.06

Infiltration Chambers #2 (HSG C - Silty Loam)				
Infiltration Rate (in/Hr)=	0.27			
Bottom Area (ft^2) =	4,282			
Infiltration Volume (ft ³) =	3,539			
Time _{drawdown} (Hours)=	36.73			

Bioretention #1 (HSG C - Silty Loam)				
Infiltration Rate (in/Hr)=	0.27			
Bottom Area (ft^2) =	4,804			
Infiltration Volume (ft ³) =	2,505			
Time _{drawdown} (Hours)=	23.18			

Bioretention #2 (HSG C - Silty Loam)	
Infiltration Rate (in/Hr)=	0.27
Bottom Area (ft^2) =	1,972
Infiltration Volume (ft ³) =	1,146
Time _{drawdown} (Hours)=	25.83

Surface Infiltration Basin (HSG C - Silty Loam)						
Infiltration Rate (in/Hr)=	0.27					
Bottom Area (ft ²) =	15,229					
Infiltration Volume (ft ³) =	18,822					
Time _{drawdown} (Hours)=	54.93					

Title	EPA Total Phosphorous & Total Nitrogen Standard Calculations
Project	200 Quannapowitt
Location	200 Quannapowitt Pkwy Wakefield, MA
Date	August 3, 2021
Revised	
Determining Nitr	ogen & Phosphorous Loads
$Load = (IA \times LEI$	R) + ($PA \times LER$)
IA = Impervious	Area, expressed in acres
PA = Pervious A	rea, expressed in acres
IFR - Load Evn	ort Rate, expressed in lb/acre/yr (Table 3-1 & 3-2)

Exising Loads

Watershed	Land Use Category	Cover Type	Area	Area	PLER	NLER	BMP Phosphorous	Phosphorous Load	BMP Nitrogen	Nitrogen Load	Total Nutrient Load
watersned	Land Use Category	Cover Type	(s.f.)	(Acre)	(lb/acre/yr)	(lb/acre/yr)	Load Reduction	(lb/yr)	Load Reduction	(lb/yr)	(lb/yr)
E-1A	COM	Impervious	63,087	1.45	1.78	15.00	0%	2.58	0%	21.72	24.30
E-1A	FOR	Pervious	5,285	0.12	0.13	0.50	0%	0.02	0%	0.06	0.08
E-1A	DevPERV (HSGC)	Pervious	15,035	0.35	0.21	2.40	0%	0.07	0%	0.83	0.90
E-1B	СОМ	Impervious	29,006	0.67	1.78	15.00	0%	1.19	0%	9.99	11.17
E-1B	FOR	Pervious	14,964	0.34	0.13	0.50	0%	0.04	0%	0.17	0.22
E-1B	DevPERV (HSGC)	Pervious	12,548	0.29	0.21	2.40	0%	0.06	0%	0.69	0.75
E-1C	СОМ	Impervious	106,692	2.45	1.78	15.00	0%	4.36	0%	36.74	41.10
E-1C	FOR	Pervious	23,421	0.54	0.13	0.50	0%	0.07	0%	0.27	0.34
E-1C	DevPERV (HSGC)	Pervious	24,200	0.56	0.21	2.40	0%	0.12	0%	1.33	1.45
E-1D	СОМ	Impervious	21,981	0.50	1.78	15.00	0%	0.90	0%	7.57	8.47
E-1D	FOR	Pervious	2,569	0.06	0.13	0.50	0%	0.01	0%	0.03	0.04
E-1D	DevPERV (HSGC)	Pervious	18,514	0.43	0.21	2.40	0%	0.09	0%	1.02	1.11
E-1E	СОМ	Impervious	74,011	1.70	1.78	15.00	0%	3.02	0%	25.49	28.51
E-1E	DevPERV (HSGC)	Pervious	40,110	0.92	0.21	2.40	0%	0.19	0%	2.21	2.40
E-2A	СОМ	Impervious	41,596	0.95	1.78	15.00	0%	1.70	0%	14.32	16.02
E-2A	DevPERV (HSGC)	Pervious	1,483	0.03	0.21	2.40	0%	0.01	0%	0.08	0.09
E-2B	СОМ	Impervious	6,981	0.16	1.78	15.00	0%	0.29	0%	2.40	2.69
E-2B	DevPERV (HSGC)	Pervious	29,519	0.68	0.21	2.40	0%	0.14	0%	1.63	1.77
E-2C	СОМ	Impervious	72,672	1.67	1.78	15.00	25%	2.23	16%	21.02	23.25
E-2C	DevPERV (HSGC)	Pervious	34,515	0.79	0.21	2.40	25%	0.12	16%	1.60	1.72
E-3	СОМ	Impervious	9,386	0.22	1.78	15.00	0%	0.38	0%	3.23	3.62
E-3	FOR	Pervious	387,840	8.90	0.13	0.50	0%	1.16	0%	4.45	5.61
E-3	DevPERV (HSGC)	Pervious	8,980	0.21	0.21	2.40	0%	0.04	0%	0.49	0.54
Total		·	1,044,395	23.98	· · · · · · · · · · · · · · · · · · ·		·	18.79		157.35	176.14

Computation Sheet

By Chk'd Apprv'd NCD TJW

TJW

National Contents Cover Type (St.) (Acre) (Bharetyr) (Bharetyr) (Load Reduction (Byr) (Bharetyr) (Bhar	roposed Loads											
P-1A	Watershed	Land Use Category	Cover Type		Area	PLER	NLER	BMP Phosphorous		BMP Nitrogen	Nitrogen Load	Total Nutrient Load
P-1A							(lb/acre/yr)			Load Reduction		(lb/yr)
P-18 MFR Impervious 8,903 0,20 2,32 14,10 55% 0,22 32% 1,98 P-18 DevPERV (HSGC) Pervious 17,448 0,40 0,21 2,40 55% 0,04 32% 0,65 P-1C MFR Impervious 10,629 0,24 2,32 14,10 55% 0,27 32% 2,34 P-1C DevPERV (HSGC) Pervious 20,040 0,46 0,21 2,40 55% 0,05 32% 0,75 P-1D MFR Impervious 11,731 0,27 2,32 14,10 55% 0,29 32% 2,58 P-1D DevPERV (HSGC) Pervious 19,029 0,44 0,21 2,40 55% 0,05 32% 2,58 P-1D DevPERV (HSGC) Pervious 46,507 1,07 0,13 0,50 0,5 0,14 0,5 P-1D DevPERV (HSGC) Pervious 46,507 1,07 0,13 0,50 0,5 0,14 0,5 P-1D DevPERV (HSGC) Pervious 46,507 1,07 0,13 0,50 0,5 0,14 0,5 P-1D DevPERV (HSGC) Pervious 46,507 1,07 0,13 0,50 0,5 0,14 0,5 P-1E DevPERV (HSGC) Pervious 46,507 1,07 0,13 0,50 0,5 0,14 0,5 P-1E DevPERV (HSGC) Pervious 46,507 1,07 0,13 0,50 0,5 0,14 0,5 P-1E DevPERV (HSGC) Pervious 8,100 0,4 0,2 0,2 P-1E DevPERV (HSGC) Pervious 8,100 0,2 0,2 0,2 0,2 P-1G DevPERV (HSGC) Pervious 8,156 0,19 0,2 0,2 0,2 0,2 P-1G DevPERV (HSGC) Pervious 9,534 2,20 2,32 14,10 85% 0,01 9,5 0,03 P-1G MFR Impervious 9,534 2,20 2,32 14,10 85% 0,01 9,5 0,02 P-1H DevPERV (HSGC) Pervious 9,534 2,20 2,32 14,10 85% 0,01 9,5 0,02 P-1H DevPERV (HSGC) Pervious 9,534 2,20 2,32 14,10 85% 0,01 9,5 0,02 P-1H DevPERV (HSGC) Pervious 9,534 2,20 2,32 14,10 8,5 0,01 9,5 0,02 P-1H DevPERV (HSGC) Pervious 9,534 2,20 2,32 14,10 8,5 0,01 9,5 0,00 P-1H DevPERV (HSGC) Pervious 9,534 2,20 2,32 14,10 8,5 0,01 9,5 0,00 P-1H DevPERV (HSGC) Pervious 9,534 2,20 2,32 14,10 9,5 0,00 9,5 0,00 P-1H DevPERV (HSGC) Pervious 9,534 2,20 2,32 14,10 9,5 0,00 9,5 0,00 P-1H DevPERV (HSGC)												3.21
P-18	P-1A	DevPERV (HSGC)	Pervious	14,724	0.34	0.21	2.40	53%	0.03	32%	0.55	0.59
P-1C MFR Imperious 106:29 0.24 2.32 14:10 53% 0.27 32% 2.34 P-1C DevERV(HSCC) Perious 20,040 0.46 0.21 2.40 53% 0.05 32% 0.75 P-1D MFR Imperious 117:31 0.27 2.32 14:10 53% 0.05 32% 0.75 P-1D DevERV(HSCC) Perious 19,029 0.44 0.21 2.40 53% 0.04 32% 0.71 W-1 FCR Perious 46:507 1.07 0.13 0.50 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.												2.18
P-1C DevFERV (HSGC) Penious 20.040 0.46 0.21 2.40 55% 0.05 32% 0.75 P-1D MFR Imperious 11,731 0.27 2.32 14,10 55% 0.29 32% 2.58 P-1D DevFERV (HSGC) Penious 119,029 0.44 0.21 2.40 55% 0.04 32% 0.71 W-1 FOR Perious 46,507 1.07 0.13 0.50 0.60 0.60 0.60 0.60 0.60 0.60 0.60												0.69
P-1D MFR mperious 11/31 0.27 2.32 14.10 53% 0.29 32% 2.58 2.58 2.59 2												2.61
P-1D DevFERV (HSGC) Pervious 19.029 0.44 0.21 2.40 53% 0.04 32% 0.71 W.1 FOR Pervious 46.507 1.07 0.13 0.50 0% 0.14 0.0% 0.53 P.1 P.1 MFR Impervious 19.186 0.44 2.32 1.4.10 53% 0.48 32% 1.22 P.1 P.1 DevFERV (HSGC) Pervious 880 0.02 2.32 1.4.10 85% 0.01 93% 0.02 P.1 DevFERV (HSGC) Pervious 9.5934 2.20 2.32 1.4.10 85% 0.01 93% 0.02 P.1 DevFERV (HSGC) Pervious 9.5934 2.20 2.32 1.4.10 85% 0.01 93% 0.02 P.1 DevFERV (HSGC) Pervious 9.5934 2.20 2.32 1.4.10 92% 0.01 93% 0.02 P.1 DevFERV (HSGC) Pervious 9.5934 2.20 2.32 1.4.10 92% 0.01 93% 0.02 P.1 DevFERV (HSGC) Pervious 9.5934 2.20 2.32 1.4.10 92% 0.01 93% 0.02 P.1 DevFERV (HSGC) Pervious 9.5934 2.20 2.32 1.4.10 92% 0.01 93% 0.02 P.1 DevFERV (HSGC) Pervious 9.5934 2.20 2.32 1.4.10 92% 0.01 93% 0.02 P.1 DevFERV (HSGC) Pervious 9.5934 2.20 2.32 1.4.10 92% 0.01 93% 0.02 P.1 DevFERV (HSGC) Pervious 9.5934 2.20 9.50 0.02 1.5 P.1 DevFERV (HSGC) Pervious 9.5934 2.20 9.50 0.02 1.5 P.1 DevFERV (HSGC) Pervious 9.5934 9.00 0.02 9.5 P.1 DevFERV (HSGC) Pervious 9.5934 9.00 0.02 9.00 0.00 0			Pervious									0.80
W-1 FOR Pervious 4.6,507 1.07 0.13 0.50 0% 0.14 0% 0.53 P-1E MFR Imperious 19,186 0.44 2.32 14,10 53% 0.48 3.2% 4.22 P-1E DevPERV (HSGC) Pervious 31,081 0.71 0.21 2.40 53% 0.07 3.2% 1,16 P-1F MFR Impervious 880 0.02 2.32 14,10 85% 0.01 93% 0.02 P-1F DevPERV (HSGC) Pervious 8.156 0.19 0.21 2.40 85% 0.01 93% 0.02 P-1G MFR Impervious 95.534 2.20 2.32 14,10 92% 0.01 99% 0.62 P-1G DevPERV (HSGC) Pervious 2.1862 0.50 0.21 2.40 92% 0.01 99% 0.02 P-1H MFR Impervious 900 0.02 2.32 14			Impervious	11,731				53%		32%		2.88
P-1E			Pervious					53%		32%		0.76
P-1E DevPERV (HSGC) Penvious 31,091 0.71 0.21 2.40 53% 0.07 32% 1.16 P.1F MFR Impervious 880 0.02 2.32 14.10 58% 0.01 93% 0.02 P.1F DevPERV (HSGC) Penvious 8.156 0.19 0.21 2.40 88% 0.01 93% 0.03 P.1G DevPERV (HSGC) Penvious 95,334 2.20 2.32 14.10 92% 0.41 98% 0.62 P.1G DevPERV (HSGC) Penvious 21,862 0.50 0.21 2.40 92% 0.01 98% 0.02 P.1H DevPERV (HSGC) Penvious 960 0.02 2.32 14.10 85% 0.01 93% 0.02 P.1H DevPERV (HSGC) Penvious 10,351 0.24 0.21 2.40 85% 0.01 93% 0.04 P.11 DevPERV (HSGC) Penvious 13,507 0.31 2.32 14.10 92% 0.06 98% 0.09 P.11 DevPERV (HSGC) Penvious 13,507 0.31 2.32 14.10 92% 0.06 98% 0.09 P.11 DevPERV (HSGC) Penvious 39,501 0.91 2.32 14.10 92% 0.06 98% 0.09 P.11 DevPERV (HSGC) Penvious 39,501 0.91 2.32 14.10 85% 0.32 93% 0.90 P.11 MFR Impervious 39,501 0.91 2.32 14.10 85% 0.32 93% 0.90 P.11 MFR Impervious 17,793 0.41 2.32 14.10 85% 0.32 93% 0.90 P.11 MFR Impervious 20,960 0.48 2.32 14.10 85% 0.32 93% 0.90 P.22 DevPERV (HSGC) Penvious 9,698 0.22 2.32 14.10 99% 0.01 100% 0.00 P.22 DevPERV (HSGC) Penvious 9,698 0.22 2.32 14.10 99% 0.01 100% 0.00 P.22 DevPERV (HSGC) Penvious 9,698 0.22 2.32 14.10 99% 0.01 100% 0.00 P.22 DevPERV (HSGC) Penvious 9,698 0.22 2.32 14.10 99% 0.01 100% 0.00 P.22 DevPERV (HSGC) Penvious 9,698 0.22 2.32 14.10 99% 0.01 100% 0.00 P.22 DevPERV (HSGC) Penvious 9,698 0.22 2.32 14.10 99% 0.01 100% 0.00 P.22 DevPERV (HSGC) Penvious 9,698 0.22 2.32 14.10 99% 0.01 100% 0.00 D.22 2.32 14.10 99% 0.01 100% 0.00 D.22 DevPERV (HSGC) Penvious 9,698 0.22 2.32 14.10 99% 0.01 100% 0.00 D.22 DevPERV (HS	W-1	FOR	Pervious	46,507	1.07		0.50	0%	0.14	0%		0.67
P.IF MFR Impervious 880 0.02 2.32 14.10 85% 0.01 93% 0.02 P-16 DevFERV (HSGC) Pervious 8.156 0.19 0.21 2.20 85% 0.01 93% 0.03 P-16 DevFERV (HSGC) Pervious 95.934 2.20 2.32 14.10 92% 0.41 98% 0.62 P-16 DevFERV (HSGC) Pervious 1.21.862 0.50 0.21 2.20 2.32 14.10 92% 0.41 98% 0.62 P-16 DevFERV (HSGC) Pervious 96.934 0.02 P-17 0.02 P-18 DevFERV (HSGC) Pervious 1.0.251 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	P-1E	MFR	Impervious	19,186	0.44	2.32	14.10	53%	0.48	32%	4.22	4.70
P-IF DevPERV (HSGC) Pervious 8.156 0.19 0.21 2.40 85% 0.01 93% 0.03 P-1G MFR Impervious 95.934 2.20 2.32 14.10 92% 0.41 98% 0.62 P-1G DevPERV (HSGC) Pervious 21,862 0.50 0.21 2.40 92% 0.01 98% 0.02 P-1H DevPERV (HSGC) Pervious 960 0.02 2.32 14.10 85% 0.01 93% 0.02 P-1H DevPERV (HSGC) Pervious 10,351 0.24 0.21 2.40 85% 0.01 93% 0.04 P-1H DevPERV (HSGC) Pervious 13,507 0.31 2.32 14.10 95% 0.06 98% 0.09 P-1I DevPERV (HSGC) Pervious 17,507 0.31 2.32 14.10 92% 0.06 98% 0.09 P-1I DevPERV (HSGC) Pervious 17,793 0.31 2.32 14.10 92% 0.06 98% 0.09 P-1I DevPERV (HSGC) Pervious 19,501 0.91 2.32 14.10 92% 0.06 98% 0.09 P-1I DevPERV (HSGC) Pervious 2,946 0.07 0.21 2.40 92% 0.06 98% 0.09 P-1I DevPERV (HSGC) Pervious 2,946 0.07 0.21 2.40 92% 0.00 98% 0.09 P-1I DevPERV (HSGC) Pervious 3,9,501 0.91 2.32 14.10 85% 0.32 93% 0.09 P-1I MFR Impervious 17,793 0.41 2.32 14.10 85% 0.32 93% 0.09 P-1I DevPERV (HSGC) Pervious 17,793 0.41 2.32 14.10 85% 0.32 93% 0.09 P-1I DevPERV (HSGC) Pervious 17,793 0.41 2.32 14.10 85% 0.04 92% 0.09 98% 0.00 P-1I DevPERV (HSGC) Pervious 10,996 0.48 2.32 14.10 85% 0.01 99% 0.01 1.00 0.00 P-1I DevPERV (HSGC) Pervious 10,996 0.48 2.32 14.10 99% 0.09 98% 0.14 1.15 P-2B MFR Impervious 9,698 0.22 2.32 14.10 99% 0.01 100% 0.00 P-2B MFR Impervious 9,698 0.22 2.32 14.10 99% 0.01 100% 0.00 P-2B MFR Impervious 9,698 0.22 2.32 14.10 99% 0.01 100% 0.00 P-2B MFR Impervious 9,698 0.22 2.32 14.10 99% 0.01 100% 0.00 P-2B MFR Impervious 9,830 1.60 0.22 2.32 14.10 99% 0.01 100% 0.00 P-2B MFR Impervious 9,830 1.60 0.22 2.32 14.10 99% 0.03 99% 0.01 100% 0.00 P-2B MFR Impervious 9,830 1.60 0.22 2.32 14.10 99% 0.03 99% 0.01 100% 0.00 P-2B MFR Impervious 9,830 0.02 2.22 14.10 99% 0.03 99% 0.01 100% 0.00 P-2B MFR Impervious 9,830 0.22 2.32 14.10 99% 0.03 99% 0.01 100% 0.00 P-2B DevPERV (HSGC) P-2B MFR Impervious 9,830 0.22 2.32 14.10 99% 0.00 99% 0.01 100% 0.00 P-2B MFR Impervious 9,830 0.22 2.32 14.10 99% 0.03 99% 0.01 100% 0.00 P-2B MFR Impervious 9,830 0.22 2.32 14.10 99% 0.03 99% 0.01 100% 0.00 P-2B MFR Impervious 9,830 0.22	P-1E	DevPERV (HSGC)	Pervious	31,091	0.71	0.21	2.40	53%	0.07	32%	1.16	1.24
P-1G	P1F	MFR	Impervious	880	0.02	2.32	14.10	85%	0.01	93%	0.02	0.03
P-1G DevPERV (HSGC) Pervious 21,862 0.50 0.21 2.40 92% 0.01 98% 0.02 P-1H MFR Impervious 960 0.02 2.32 14.10 85% 0.01 93% 0.02 P-1H DevPERV (HSGC) Pervious 10,351 0.24 0.21 2.40 85% 0.01 93% 0.04 P-1I DevPERV (HSGC) Pervious 13,507 0.31 2.32 14.10 92% 0.06 98% 0.09 P-1I DevPERV (HSGC) Pervious 2,946 0.07 0.31 2.32 14.10 92% 0.06 98% 0.09 P-1I DevPERV (HSGC) Pervious 39,501 0.91 2.32 14.10 92% 0.00 98% 0.00 P-1I DevPERV (HSGC) Pervious 2,946 0.07 0.21 2.40 92% 0.00 98% 0.00 P-1I DevPERV (HSGC) Pervious 39,501 0.91 2.32 14.10 85% 0.32 93% 0.90 P-1I DevPERV (HSGC) Pervious 4,000 0.00 P-1I DevPERV (HSGC) P-1I DEVPERV (HSGC	P-1F	DevPERV (HSGC)	Pervious	8,156	0.19	0.21	2.40	85%	0.01	93%	0.03	0.04
P-1H	P-1G	MFR	Impervious	95,934	2.20	2.32	14.10	92%	0.41	98%	0.62	1.03
P-1H DevPERV (HSGC) Pervious 10,351 0.24 0.21 2.40 85% 0.01 93% 0.04 P-11 MFR Impervious 13,507 0.31 2.32 14,10 92% 0.06 98% 0.00 P-11 DevPERV (HSGC) Pervious 2,246 0.07 0.21 2.40 92% 0.00 98% 0.00 P-11 DevPERV (HSGC) Pervious 39,501 0.91 2.32 14,10 85% 0.32 93% 0.00 P-11 DevPERV (HSGC) Pervious 17,793 0.41 2.32 14,10 85% 0.32 93% 0.00 P-11 DevPERV (HSGC) Pervious 17,793 0.41 2.32 14,10 85% 0.41 93% 0.40 P-14 DevPERV (HSGC) Pervious 20,960 0.48 2.32 14,10 85% 0.01 98% 0.01 P-2A DevPERV (HSGC) Pervious 20,960 0.48 2.32 14,10 92% 0.99 98% 0.14 P-2A DevPERV (HSGC) Pervious 9,698 0.22 2.32 14,10 99% 0.01 0.00 P-2B DevPERV (HSGC) Pervious 9,698 0.22 2.32 14,10 99% 0.01 100% 0.00 P-2B DevPERV (HSGC) Pervious 9,698 0.22 2.32 14,10 99% 0.01 100% 0.00 P-2B DevPERV (HSGC) Pervious 9,830 1.60 0.21 2.24 99% 0.00 99% 0.01 100% 0.00 P-2B DevPERV (HSGC) Pervious 9,830 1.60 0.21 2.24 99% 0.00 99% 0.01 100% 0.00 P-2B DevPERV (HSGC) Pervious 9,835 1.60 0.21 2.32 14,10 98% 0.03 99% 0.11 R-2A MFR Impervious 9.2854 0.75 2.32 14,10 98% 0.03 99% 0.11 R-2A MFR Impervious 9.3854 0.75 2.32 14,10 98% 0.03 99% 0.11 P-3 MFR Impervious 9.385,544 0.75 2.32 14,10 98% 0.04 99% 0.04 99% 0.11 P-3 MFR Impervious 9.385,544 0.75 2.32 14,10 98% 0.04 99% 0.04 99% 0.11 P-3 MFR Impervious 9.385,544 0.75 2.32 14,10 98% 0.04 99% 0.04 99% 0.11 P-3 MFR Impervious 9.385 0.22 2.32 14,10 98% 0.04 99% 0.04 99% 0.11 P-3 MFR Impervious 9.385,544 0.75 2.32 14,10 98% 0.04 99% 0.04 99% 0.11 P-3 MFR Impervious 9.385,544 0.75 2.32 14,10 98% 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06	P-1G	DevPERV (HSGC)	Pervious	21,862	0.50	0.21	2.40	92%	0.01	98%	0.02	0.03
P-11 MFR Impervious 13,507 0.31 2.32 14.10 0.9% 0.06 98% 0.09 P-11 DevPERV (HSGC) Pervious 2.946 0.07 0.21 2.240 92% 0.00 98% 0.00 R-1F MFR Impervious 39,501 0.91 2.32 14,10 85% 0.32 93% 0.90 R-1H MFR Impervious 17,793 0.41 2.32 14,10 85% 0.14 93% 0.00 R-1I MFR Impervious 20,960 0.48 2.32 14,10 85% 0.01 0.90 98% 0.04 P-2B MFR Impervious 20,960 0.48 0.21 2.40 0.96 0.10 0% 1.15 0.44 0.21 2.40 0.96 0.11 0.00 0.01 0.00 1.16 0.00 0.00 1.16 0.00 1.16 0.00 1.16 0.00 0.00 1.00	P-1H	MFR	Impervious	960	0.02	2.32	14.10	85%	0.01	93%	0.02	0.03
P-11 DevPERV (HSGC) Pervious 2.946 0.07 0.21 2.40 92% 0.00 98% 0.00 R-1F MFR Impervious 39.501 0.91 2.32 14.10 85% 0.32 93% 0.90 R-1H MFR Impervious 17.793 0.41 2.32 14.10 85% 0.14 93% 0.40 R-1H MFR Impervious 20.960 0.48 2.32 14.10 92% 0.99 98% 0.14 92% 0.99 98% 0.14 P-2A DevPERV (HSCC) Pervious 20.966 0.48 0.21 2.40 0% 0.01 0% 0.10 0% 1.15 P-2B MFR Impervious 9.698 0.22 2.32 14.10 99% 0.01 100% 0.00 P-2B DevPERV (HSCC) Pervious 9.698 0.22 2.32 14.10 99% 0.01 100% 0.00 P-2B DevPERV (HSCC) Pervious 1.698.30 1.60 0.21 2.40 99% 0.00 100% 0.00 P-2B MFR Impervious 1.698.30 1.60 0.21 2.40 99% 0.00 100% 0.00 P-2B MFR Impervious 1.698.30 1.60 0.21 2.24 99% 0.00 100% 0.00 P-2B MFR Impervious 1.698.30 1.60 0.21 2.24 99% 0.00 100% 0.00 P-2B MFR Impervious 1.698.30 1.60 0.21 2.24 99% 0.00 100% 0.00 P-2B MFR Impervious 1.698.30 1.60 0.21 2.24 99% 0.00 100% 0.00 P-2B MFR Impervious 1.698.30 1.60 0.21 2.24 14.10 98% 0.03 99% 0.10 P-2B MFR Impervious 1.698.30 1.699 0.71 2.32 14.10 98% 0.03 99% 0.11 P-2B MFR Impervious 1.698 0.75 2.32 14.10 98% 0.03 99% 0.11 P-2B MFR Impervious 1.698 0.92 2.22 14.10 98% 0.03 99% 0.11 P-2B MFR Impervious 1.698 0.92 2.22 14.10 98% 0.03 99% 0.11 P-2B MFR Impervious 1.698 0.92 2.22 14.10 98% 0.03 99% 0.11 P-2B MFR Impervious 1.698 0.92 2.22 14.10 98% 0.04 99% 0.04 99% 0.13 P-2B MFR Impervious 1.698 0.92 2.22 14.10 98% 0.04 99% 0.04 99% 0.13 P-2B MFR Impervious 1.698 0.92 2.22 14.10 98% 0.04 99% 0.04 99% 0.13 P-2B MFR Impervious 1.698 0.92 2.22 14.10 98% 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06	P-1H	DevPERV (HSGC)	Pervious	10.351	0.24	0.21	2.40	85%	0.01	93%	0.04	0.05
R-1F MFR Impenious 39,501 0.91 2.32 14.10 85% 0.32 93% 0.90 R-1H MFR Impenious 17,793 0.41 2.32 14.10 85% 0.14 93% 0.40 R-1H MFR Impenious 17,793 0.41 2.32 14.10 85% 0.14 93% 0.40 R-1H MFR Impenious 20,960 0.48 2.32 14.10 92% 0.99 98% 0.14 P-2A DevPERV (PSC) Pervious 20,966 0.48 0.21 2.40 0.66 0.10 0.66 0.11 0.66 0.10 0.10	P-1I	MFR	Impervious	13.507	0.31	2.32	14.10	92%	0.06	98%	0.09	0.14
R-1H MFR Imperious 17,793 0.41 2.32 14.10 85% 0.14 93% 0.40 R-1I MFR Imperious 20,960 0.48 2.32 14.10 92% 0.09 98% 0.14 P-2A DevPERV (HSC) Pervious 20,966 0.48 0.21 2.40 0% 0.10 0% 1.15 P-2B MFR Imperious 9,688 0.22 2.32 14.10 99% 0.01 100% 0.00 P-2B DevPERV (HSC) Pervious 69,830 1.60 0.21 2.40 99% 0.01 100% 0.00 R-2A MFR Imperious 30,813 0.71 2.32 14.10 98% 0.03 99% 0.10 R-2B MFR Imperious 30,813 0.71 2.32 14.10 98% 0.03 99% 0.10 R-2C MFR Imperious 32,854 0.75 2.32 14.10 98% 0.03 99% 0.11 R-2C MFR Imperious 40,094 0.92 2.32 14.10 98% 0.03 99% 0.11 R-2C MFR Imperious 40,094 0.92 2.32 14.10 98% 0.03 99% 0.13 P-3 MFR Imperious 9,383 0.22 2.32 14.10 98% 0.04 99% 0.13 P-3 FOR Pervious 9,385,544 8.85 0.13 0.50 0% 1.15 0% 4.43	P-1I	DevPERV (HSGC)	Pervious	2.946	0.07	0.21	2.40	92%	0.00	98%	0.00	0.00
R-1H MFR Impervious 17,793 0.41 2.32 14.10 85% 0.14 93% 0.40 R-11 MFR Impervious 20,960 0.48 2.32 14.10 92% 0.09 98% 0.14 P-2A DevPERV (HSGC) Pervious 20,966 0.48 0.21 2.40 0% 0.10 0% 1.15 P-2B MFR Impervious 9,968 0.22 2.32 14.10 99% 0.01 100% 0.00 P-2B DevPERV (HSGC) Pervious 69,830 1.60 0.21 2.40 99% 0.01 100% 0.00 R-2A MFR Impervious 30,813 0.71 2.32 14.10 99% 0.03 99% 0.10 R-2B MFR Impervious 30,813 0.71 2.32 14.10 98% 0.03 99% 0.10 R-2B MFR Impervious 30,813 0.71 2.32 14.10 98% 0.03 99% 0.10 R-2C MFR Impervious 30,813 0.71 2.32 14.10 98% 0.03 99% 0.10 R-2C MFR Impervious 30,813 0.75 2.32 14.10 98% 0.03 99% 0.10 P-3 MFR Impervious 40,094 0.92 2.32 14.10 98% 0.03 99% 0.13 P-3 MFR Impervious 9,383 0.22 2.32 14.10 98% 0.04 99% 0.13 P-3 FOR Pervious 38,544 8.85 0.13 0.50 0% 1.15 0% 4.43	R-1F	MFR	Impervious	39.501	0.91	2.32	14.10	85%	0.32	93%	0.90	1.21
R-11 MFR Impervious 20,960 0.48 2.32 14.10 92% 0.09 98% 0.14 P-2A DevPERV (HSGC) Pervious 20,966 0.48 0.21 2.240 0% 0.10 0% 1.15 P-2B MFR Impervious 9,888 0.22 2.32 14.10 99% 0.01 100% 0.00 R-2B DevPERV (HSGC) Pervious 69,830 1.60 0.21 2.40 99% 0.01 100% 0.00 R-2A MFR Impervious 30,813 0.71 2.52 14.10 98% 0.03 99% 0.10 R-2B MFR Impervious 30,813 0.71 2.52 14.10 98% 0.03 99% 0.10 R-2B MFR Impervious 32,854 0.75 2.32 14.10 98% 0.03 99% 0.11 R-2C MFR Impervious 40,094 0.92 2.32 <td< td=""><td>R-1H</td><td>MFR</td><td>Impervious</td><td>17,793</td><td>0.41</td><td></td><td>14.10</td><td>85%</td><td>0.14</td><td>93%</td><td>0.40</td><td>0.55</td></td<>	R-1H	MFR	Impervious	17,793	0.41		14.10	85%	0.14	93%	0.40	0.55
P-2A DevPERV (HSGC) Pentious 20,956 0.48 0.21 2.40 0% 0.10 0% 1.15 P-2B MFR Impervious 9,698 0.22 2.32 14.10 99% 0.01 100% 0.00 P-2B DevPERV (HSGC) Pentious 69,830 1.60 0.21 2.40 99% 0.00 100% 0.00 R-2A MFR Impervious 30,813 0.71 2.32 14.10 98% 0.03 99% 0.10 R-2B MFR Impervious 30,813 0.71 2.32 14.10 98% 0.03 99% 0.10 R-2C MFR Impervious 40,094 0.92 2.32 14.10 98% 0.03 99% 0.11 R-2C MFR Impervious 40,094 0.92 2.32 14.10 98% 0.04 99% 0.13 P-3 MFR Impervious 40,094 0.92 2.32 14.10 98% 0.04 99% 0.13 P-3 FOR Pervious 38,544 8.85 0.13 0.50 0% 1.15 0% 4.43	R-1I	MFR	Impervious	20.960	0.48		14.10	92%	0.09	98%	0.14	0.22
P-2B DevPERV (HSGC) Pervious 69,830 1,60 0.21 2.40 99% 0.00 100% 0.00 R-2A MFR Impervious 30,813 0.71 2.32 14.10 98% 0.03 99% 0.10 R-2B MFR Impervious 32,854 0.75 2.32 14.10 98% 0.03 99% 0.11 R-2C MFR Impervious 40,094 0.92 2.32 14.10 98% 0.04 99% 0.13 P-3 MFR Impervious 9,385,344 0.92 2.32 14.10 98% 0.04 99% 0.13 P-3 FOR Pervious 385,544 8.85 0.13 0.50 0% 1.15 0% 4.43	P-2A	DevPERV (HSGC)										1.26
P-2B DevPERV (HSGC) Pervious 69,830 1,60 0.21 2.40 99% 0.00 100% 0.00 R-2A MFR Impervious 30,813 0.71 2.32 14.10 98% 0.03 99% 0.10 R-2B MFR Impervious 32,854 0.75 2.32 14.10 98% 0.03 99% 0.11 R-2C MFR Impervious 40,094 0.92 2.32 14.10 98% 0.04 99% 0.13 P-3 MFR Impervious 9,385,344 0.92 2.32 14.10 0.9% 0.50 0% 0.50 0% 3.04 P-3 FOR Pervious 385,544 8.85 0.13 0.50 0% 1.15 0% 4.43			Impervious									0.01
R-2A MFR Impervious 30,813 0.71 2.32 14.10 98% 0.03 99% 0.10 R-2B MFR Impervious 32,854 0.75 2.32 14.10 98% 0.03 99% 0.11 R-2C MFR Impervious 40,094 0.92 2.32 14.10 98% 0.04 99% 0.13 P-3 MFR Impervious 9,383 0.22 2.32 14.10 0% 0.50 0% 3.04 P-3 FOR Pervious 385,544 8.85 0.13 0.50 0% 1.15 0% 4.43												0.00
R-2B MFR Impervious 32,854 0.75 2.32 14.10 98% 0.03 99% 0.11 R-2C MFR Impervious 40,094 0.92 2.32 14.10 98% 0.04 99% 0.13 P-3 MFR Impervious 9,383 0.22 2.32 14.10 0% 0.50 0% 3.04 P-3 FOR Pervious 385,544 8.85 0.13 0.50 0% 1.15 0% 4.43												0.13
R-2C MFR Impervious 40,094 0.92 2.32 14.10 98% 0.04 99% 0.13 P-3 MFR Impervious 9,383 0.22 2.32 14.10 0% 0.50 0% 3.04 P-3 FOR Pervious 385,544 8.85 0.13 0.50 0% 1.15 0% 4.43												0.14
P-3 MFR Impervious 9,383 0.22 2.32 14.10 0% 0.50 0% 3.04 P-3 FOR Pervious 385,544 8.85 0.13 0.50 0% 1.15 0% 4.43												0.17
P-3 FOR Pervious 385,544 8.85 0.13 0.50 0% 1.15 0% 4.43												3.54
												5.58
Total 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Total	. 510	1 5. VIOUS	1.044.395	23.98	0.10	0.00	370	4.88	370	29.59	34.47

		Computation Sh	eet
	EPA Total Phosphorous & Total Nitrogen Standard Calculations		
Title		By	NCD
Project	200 Quannapowitt	Chk'd	TJW
Location	200 Quannapowitt Pkwy Wakefield, MA	Apprv'd	TJW
Date	August 3, 2021		

Nutrient Loading Reduction

Existing Load	176.14
Proposed Load	34.47
Reduction	80%

Required Volume = (IA*Rainfall Depth) + (PA*Rainfall Depth) * (3,630 cf/acre-in)

Required BMP Storage Volumes			BMP Design	n Capacity (in)		
	Contributing Pervious	Contributing Impervious	Pervious Cover	Impervious Cover	Required Volume	Provided Volume
BMP	(Acre)	(Acre)	(Table 3-4)	(Performance Tables)	(c.f.)	Below Outlet (c.f.)
Wet Basin #1	0.34	0.30	0.69	2.00	3,027	3,980
Wet Basin #2	1.30	0.72	0.69	2.00	8,460	10,212
Wet Basin #3	0.71	0.66	0.69	2.00	6,549	6,991
Bioretention Area #1	0.19	0.93	0.06	0.60	2,060	2,505
Bioretention Area #2	0.24	0.43	0.06	0.60	989	1,146
Infiltration Chamber #1	0.50	2.20	0.12	1.00	8,213	8,753
Infiltration Chamber #2	0.07	0.79	0.12	1.00	2,902	3,589
Infiltration Basin	1.60	2.60	0.69	1.50	18,198	18,822

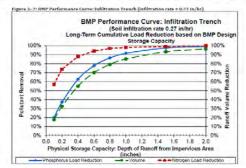
Table 3-1: Average annual distinct phosphorus (P) load export rates for use in estimating P load

Phosphorus Source Category by Land Use	Land Surface Cover	P Load Export Rate, lbs/acre/year	P Load Export Rate kg/ha/yr.	
Commercial (COM) and Industrial	Directly connected impervious	1.78	2.0	
(IND)	Pervious	See* DevPERV	See* DevPERV	
Multi-Family (MFR) and High-	Directly connected impervious	2.32	2.6	
Density Residential (HDR)	Pervious	See* DevPERV	See* DevPERV	
Medium -Density Residential	Directly connected impervious	1.96	2.2	
(MDR)	Pervious	See* DevPERV	See* DevPERV	
Low Density Residential (LDR) - "Rural"	Directly connected impervious	1.52	1.7	
"Kurai"	Pervious	See* DevPERV	See* DevPERV	
Highway (HWY)	Directly connected impervious	1.34	1.5	
- mpanuy (1111 1)	Pervious	See* DevPERV	See* DevPERV	
Forest (FOR)	Directly connected impervious	1.52	1.7	
	Pervious	0.13	0.13	
Open Land (OPEN)	Directly connected impervious	1.52	1.7	
	Pervious	See* DevPERV	See* DevPERV	
Agriculture (AG)	Directly connected impervious	1.52	1.7	
	Pervious	0.45	0.5	
*Developed Land Pervious (DevPERV) – HSG A	Pervious	0.03	0.03	
*Developed Land Pervious (DevPERV) – HSG B	Pervious	0.12	0.13	
*Developed Land Pervious (DevPERV) – HSG C	Pervious	0.21	0.24	
*Developed Land Pervious (DevPERV) – HSG C/D	Pervious	0.29	0.33	
*Developed Land Pervious (DevPERV) – HSG D	Pervious	0.37	0.41	

Table 3-2: Average annual distinct nitrogen (N) load export rates for use in estimating N load reduction credits in the MA MS4 Permit

Nitrogen Source Category by Land Use	Land Surface Cover	N Load Export Rate, lbs/acre/year	N Load Export Rate, kg/ha/yr.
Commercial (COM) and Industrial	Directly connected impervious	15.0	16.9
(IND)	Pervious	See* DevPERV	See* DevPERV
All Residential	Directly connected impervious	14.1	15.8
	Pervious	See* DevPERV	See* DevPERV
Highway (HWY)	Directly connected impervious	10.5	11.8
	Pervious	See* DevPERV	See* DevPERV
Forest (FOR)	Directly connected impervious	11.3	12.7
	Pervious	0.5	0.6
Oven Land (OPEN)	Directly connected impervious	11.3	12.7
.,	Pervious	See* DevPERV	See* DevPERV
Agriculture (AG)	Directly connected impervious	11.3	12.7
	Pervious	2.6	2.9
*Developed Land Pervious (DevPERV) – HSG A	Pervious	0,3	0.3
*Developed Land Pervious (DevPERV) – HSG B	Pervious	1.2	1.3
*Developed Land Pervious (DevPERV) – HSG C	Pervious	2,4	2.7
*Developed Land Pervious (DevPERV) – HSG C/D	Pervious	3.1	3.5
*Developed Land Pervious (DevPERV) – HSG D	Pervious	3.6	4.1

Table 3- 4: Developed Land Pervious Area Runoff Depths based on Precipitation depth and Hydrological Soil Croups (HSGs)


		Gr	oups		
		F	tunoff Depth, inc	hes	
Rainfall Depth,	Pervious HSG			Pervious HSG	
Inches	A	Pervious HSG B	Pervious HSG C	C/D	Pervious HSG [
0.10	0.00	0.00	0.00	0.00	0.00
0.20	0.00	0.00	0.01	0.02	0.02
0.40	0.00	0.00	0.03	0.05	0.06
0.50	0.00	0.01	0.05	0.07	0.09
0.60	0.01	0.02	0.06	0.09	0.11
0.80	0.02	0.03	0.09	0.13	0.16
1.00	0.03	0.04	0.12	0.17	0.21
1.20	0.04	0.05	0.14	0.27	0.39
1.50	0.08	0.11	0.39	0.55	0.72
2.00	0.14	0.22	0.69	0.89	1.08

Notes: Runoff depths derived from combination of volumetric runoff coefficients from Table 5 of Small Storm Hydrology and Why it is Important for the Design of Stormwater Control Practices, (Pitt. 1999), and using the Stormwater Management Model (SWMM) in continuous model mode for hourly precipitation data for Boston, MA, 1998-2002.

Title	EPA Total Phosphorous & Total Nitrogen Standard Calculations
Project	200 Quannapowitt
Location	200 Quannapowitt Pkwy Wakefield, MA
Date	August 3, 2021

Table 3-7: Infiltration Trench (IR = 0.27 in/hr) BMP Performance Tab

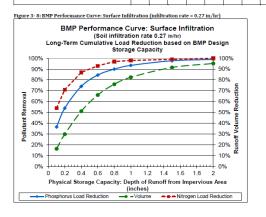

Infiltration Trench Long-Term P							le:	
BMP Capacity: Depth of Runotf from Impervious Area (inches)	0.1	0.2	0,4	0.6	0,6	1.0	1.5	2.0
Runoff Volume Reduction	17.0%	32.5%	55.0%	70.0%	79.3%	65.2%	93.3%	96.3%
Cumulative Phosphorus Load Reduction	20%	37%	53%	78%	56%	92%	97%	99%
Cumulative Nitrogen Load Reduction	57%	74%	88%	94%	97%	98%	99%	100%

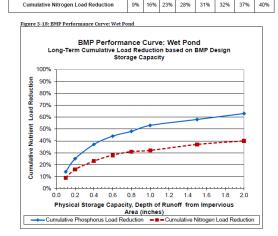
Table 3- 13: Infiltration Basin (0.27 in/hr) BMP Performance Table Surface Infiltration (0.27 in/hr) BMP Performance Table: Long-Term Phosphorus & Nitrogen Load Reduction BMP Capacity: Depth of Runoff from Impervious Area (inches) 0.2 0.4 0.6 8.0 1.5 0.1 1.0 2.0 51% 66% 76% 82% 91% Runoff Volume Reduction 16% 30% 95% 85% Cumulative Phosphorus Load Reduction 37% 54% 74% 90% 93% 98% 99%

54% 71%

87% 93% 97%

Cumulative Nitrogen Load Reduction

14% 25% 37% 44% 48% 53% 58% 63%


By Chk'd

Cumulative Phosphorus Load Reduction

Computation Sheet

NCD

TJW

INSTRUCTIONS:

Version 1, Automated: Mar. 4, 2008

- 1. In BMP Column, click on Blue Cell to Activate Drop Down Menu
- 2. Select BMP from Drop Down Menu
- 3. After BMP is selected, TSS Removal and other Columns are automatically completed.

Location: 200 Quannapowitt Parkway Wakefield, MA

	B BMP ¹	C TSS Removal Rate ¹	D Starting TSS Load*	E Amount Removed (C*D)	F Remaining Load (D-E)
eet	Street Sweeping - 5%	0.05	1.00	0.05	0.95
Removal on Worksheet	Deep Sump and Hooded Catch Basin	0.25	0.95	0.24	0.71
Rem on W	Subsurface Infiltration Structure	0.80	0.71	0.57	0.14
TSS ReCalculation		0.00	0.14	0.00	0.14
Cal		0.00	0.14	0.00	0.14
		Total T	86%	Separate Form Needs to be Completed for Each Outlet or BMP Train	

Project: 200 Quannapowitt
Prepared By: NCD
Date: 16-Mar-21

*Equals remaining load from previous BMP (E) which enters the BMP

SC-310 CHAMBER

Designed to meet the most stringent industry performance standards for superior structural integrity while providing designers with a cost-effective method to save valuable land and protect water resources. The StormTech system is designed primarily to be used under parking lots, thus maximizing land usage for private (commercial) and public applications. StormTech chambers can also be used in conjunction with Green Infrastructure, thus enhancing the performance and extending the service life of these practices.

STORMTECH SC-310 CHAMBER

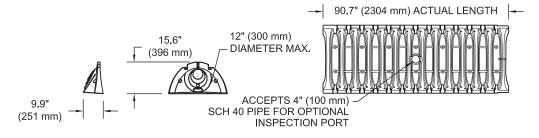
(not to scale)

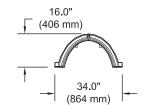
Nominal Chamber Specifications

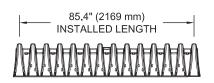
Size (L x W x H) 85.4" x 34.0" x 16.0" 2,170 mm x 864 mm x 406 mm

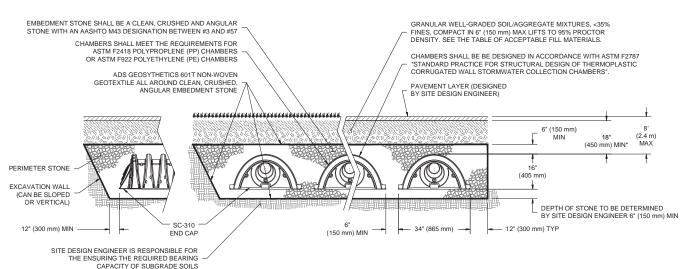
Chamber Storage 14.7 ft³ (0.42 m³)

Min. Installed Storage* 31.0 ft³ (0.88 m³)


Weight


37.0 lbs (16.8 kg)


Shipping


41 chambers/pallet 108 end caps/pallet 18 pallets/truck

*Assumes 6" (150 mm) stone above and below chambers and 40% stone porosity.

SC-310 CUMULATIVE STORAGE VOLUMES PER CHAMBER

Assumes 40% Stone Porosity. Calculations are Based Upon a 6" (150 mm) Stone Base Under Chambers.

Depth of Water in System Inches (mm)		llative Chamber orage ft³ (m³)	Total System Cumulative Storage ft³ (m³)
28 (711)		14.70 (0.416)	31.00 (0.878)
27 (686)		14.70 (0.416)	30.21 (0.855)
26 (680)	Stone	14.70 (0.416)	29.42 (0.833)
25 (610)	Cover	14.70 (0.416)	28.63 (0.811)
24 (609)		14.70 (0.416)	27.84 (0.788)
23 (584)	\ \	14.70 (0.416)	27.05 (0.766)
22 (559)		14.70 (0.416)	26.26 (0.748)
21 (533)		14.64 (0.415)	25.43 (0.720)
20 (508)		14.49 (0.410)	24.54 (0.695)
19 (483)		14.22 (0.403)	23.58 (0.668)
18 (457)		13.68 (0.387)	22.47 (0.636)
17 (432)		12.99 (0.368)	21.25 (0.602)
16 (406)		12.17 (0.345)	19.97 (0.566)
15 (381)		11.25 (0.319)	18.62 (0.528)
14 (356)		10.23 (0.290)	17.22 (0.488)
13 (330)		9.15 (0.260)	15.78 (0.447)
12 (305)		7.99 (0.227)	14.29 (0.425)
11 (279)		6.78 (0.192)	12.77 (0.362)
10 (254)		5.51 (0.156)	11.22 (0.318)
9 (229)		4.19 (0.119)	9.64 (0.278)
8 (203)		2.83 (0.081)	8.03 (0.227)
7 (178)		1.43 (0.041)	6.40 (0.181)
6 (152)	1	0	4.74 (0.134)
5 (127)		0	3.95 (0.112)
4(102)	_ Stone	Foundation 0	3.16 (0.090)
3 (76)	0.0110	0	2.37 (0.067)
2 (51)		0	1.58 (0.046)
1 (25)	1	0	0.79 (0.022)

Note: Add 0.79 ft $\!^3$ (0.022 m $\!^3$) of storage for each additional inch. (25 mm) of stone foundation.

STORAGE VOLUME PER CHAMBER FT3 (M3)

	Bare Chamber		hamber and S dation Depth	
	Storage ft³ (m³)	6 (150)	12 (300)	18 (450)
StormTech SC-310	14.7 (0.4)	31.0 (0.9)	35.7 (1.0)	40.4 (1.1)

Note: Assumes 6" (150 mm) of stone above chambers, 6" (150 mm) row spacing and 40% stone porosity.

AMOUNT OF STONE PER CHAMBER

ENCLICH TONE (vdo3)	Ston	e Foundation D	epth
ENGLISH TONS (yds ³)	6"	12"	18"
StormTech SC-310	2.1 (1.5 yd³)	2.7 (1.9 yd³)	3.4 (2.4 yd³)
METRIC KILOGRAMS (m³)	150 mm	300 mm	450 mm
StormTech SC-310	1830 (1.1 m³)	2490 (1.5 m³)	2990 (1.8 m³)

Note: Assumes 6" (150 mm) of stone above, and between chambers.

VOLUME EXCAVATION PER CHAMBER YD3 (M3)

	St	one Foundation D	epth
	6" (150 mm)	12" (300 mm)	18" (450 mm)
StormTech SC-310	2.9 (2.2)	3.4 (2.6)	3.8 (2.9)

Note: Assumes 6" (150 mm) of row separation and 18" (450 mm) of cover. The volume of excavation will vary as the depth of the cover increases.

Working on a project?
Visit us at www.stormtech.com
and utilize the StormTech Design Tool

For more information on the StormTech SC-310 Chamber and other ADS products, please contact our Customer Service Representatives at 1-800-821-6710

Detention - Retention - Water Quality

Division of

STORMTECHIS	SOLATOR	ROW SIZI	NG CHART		
	SC-310	SC-740	DC-780	MC-3500	MC-4500
Chamber Area (Sq.Ft.)	20	27.8	27.8	43.2	30.1
Treated Flow Rate per chamber (CFS)	0.11	0.15	0.15	0.24	0.17

NOTE: Testing of the Isolator Row completed by Tennesse Tech has been verified by NJCAT and it has shown to have a TSS removal efficiency of 84% for SIL-CO-SIL 250

NJCAT verified Treated Flow Rate (GPM / Sq.Ft.)

2.5

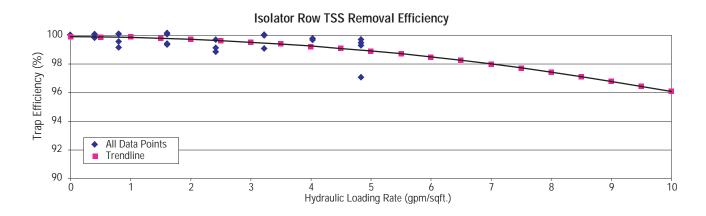
Isolator Row™ Performance Test Results

as reported by Tennessee Technological University

StormTech chambers are the only chambers that meet stringent AASHTO safety factors for traffic load and deep burial applications.

Four SC-740 chambers in test apparatus at Tennessee Tech.

Uniform sediment distribution (US Silica OK-110 SG=2.65).


The Isolator Row is an innovative yet simple system that inexpensively removes total suspended solids (TSS) from storm water and provides easy access for inspection and maintenance. In the Isolator Row, StormTech chambers are completely enclosed by geotextile fabrics. Sediment is captured in the Isolator Row as storm water passes through the fabric to the stone and adjacent chambers.

The recent completion of TSS removal testing at Tennessee Tech provides design engineers and regulators solid data that can be used to estimate the maintenance free interval and establishes the Isolator Row as a best management practice (BMP) for TSS removal.

For additional information on the Isolator Row (patent pending), contact StormTech at (888) 892-2694.

Performance Summary:

- · 97% Overall TSS Removal
- · 80% TSS Captured in the Isolator Row
- Estimated Maintenance Interval 3 years

Another Success Story for the Isolator Row

After One Year of Operation, Harvey Industries Inspected and Cleaned Their Isolator Row in Portland, Maine

150 StormTech SC-740 chambers were installed in April, 2003. On July 7, 2004, after one year in service, StormTech inspected the Isolator Row and observed maintenance procedures.

Vactor trucks are typically equipped with both jetting and vacuum equipment.

During maintenance, the jetting nozzle propels itself down the Isolator Row scouring up sediment and washing it down to the access manhole where it is vacuumed into the truck.

After four passes of the jetting nozzle at pressures up to 1900 psi, the bottom fabric was scoured clean.

Subsurface Stormwater Management[™]

20 Beaver Road, Suite 104 | Wethersfield | Connecticut | 06109 860.529.8188 | 888.892.2694 | fax 866.328.8401 | www.stormtech.com

StormTech products are covered by one or more of the following patents: U.S. Patents: 5,401,459; 5,511,903; 5,716,163; 5,588,778; 5,839,844; Canadian Patents: 2,158,418 Other U.S. and Foreign Patents Pending

F-1. Rainfall Data for Massachusetts from Rainfall Frequency Atlas of the United States (TP-40)

■ Users of this Handbook should note that current MA DEP written guidance (see DEP Waterlines newsletter -- Fall 2000) requires the use of TP-40 Rainfall Data for calculations under the Wetlands Protection Regulations and the Stormwater Management Policy. More stringent design storms may be used under a local bylaw or ordinance. However, DEP will continue to require the use of TP-40 in any case it reviews under the Wetlands Protection Act and Stormwater Management Policy.

Adjusted Technical Paper 40 Design Storms for 24-hour Event by County

County Name	1-yr 24-hr	2-yr 24-hr	5-yr 24-hr	10-yr 24-hr	25-yr 24-hr	50-yr 24-hr	100-yr 24-hr
Barnstable	2.5	3.6	4.5	4.8	5.7	6.4	7.1
Berkshire	2.5	2.9	3.8	4.4	5.1	5.9	6.4
Bristol	2.5	3.4	4.3	4.8	5.6	6.3	7.0
Dukes	2.5	3.6	4.6	4.9	5.8	6.5	7.2
Essex	2.5	3.1	3.9	4.5	5.4	5.9	6.5
Franklin	2.5	2.9	3.8	4.3	5.1	5.8	6.2
Hampden	2.5	3.0	4.0	4.6	5.3	6.0	6.5
Hampshire	2.5	3.0	3.9	4.5	5.2	5.9	6.4
Middlesex	2.5	3.1	4.0	4.5	5.3	5.9	6.5
Nantucket	2.5	3.6	4.6	4.9	5.8	6.5	7.2
Norfolk	2.5	3.2	4.1	4.7	5.5	6.1	6.7
Plymouth	2.5	3.4	4.3	4.7	5.6	6.2	7.0
Suffolk	2.5	3.2	4.0	4.6	5.5	6.0	6.6
Worcester	2.5	3.0	4.0	4.5	5.3	5.9	6.5

Manning's Number Tables

	\sim
2	E G
Ë	E
ž	Ö
턴	.8
E	ed G
Service	nde
	ă
ROUGHNESS	ошше
Ž	စ္မ
뚱	-
ĕ	Ę
2	er
Ē	es generall
F	27 20
6	Ĭď
90	V8
ALUES OF THE R	s are values
ŧ	ಹ
>	i.e
	ğ
	9
	oldfac
	Ä
	ĕ

VALUES OF THE ROUGHNESS COEFFICIENT n (continued)

(notinged against and sources)	(ndicon at population)						
Type of channel and description	Minimum	Normal	Normal Maximum	Type of channel and description	Minimum	Normal	Maximum
A. CLOSED CONDUITS FLOWING PARTLY FULL							
A-1. Metal				B. LINED OR BUILT-UP CHANNELS			
a. Brass, smooth	0.00	0.010	0.013	B-1. Metal			
b. Steel				a. Smooth steel surface	;	,	
1. Lockbar and welded	0.010	0.012	0.014	1. Unpainted	0.011	0.012	0.014
2. Riveted and spiral	0.013	0.016	0.017	2. Painted	0.012	0.013	0.017
c. Cast inn				b. Corrugated	0.021	0.025	0.030
1 Costad	010	0 013	0.014	B-2. Nonmetal			
1. Contract	0.010		810.0	a. Cement			
	110.0	10.0	0.010	Nest surface	0.010	0.011	0.013
d. Wrought iron		;		D. Monton	0 011	0 013	0.015
1. Black	0.012	0.014	0.015			2	
2. Galvanized	0.013	0.016	0.017	0. W00d	0.0		•
e. Corrugated metal					0.010	0.012	0.014
1. Subdrain	0.017	0.019	0.021	2. Planed, creosoted	0.011	0.012	0.013
2 Storm drain	0 021	0.034	0.030	3. Unplaned	0.011	0.013	0.015
A-9 Normstel				4. Plank with battens	0.012	0.015	0.018
A. T. Molimeter	000	8	010	5. Lined with roofing paper	0.010	0.014	0.017
d. Lucive	88	86.6	0.010	c. Concrete			
o. Class	90.0	0.010	7.019		0.011	0.013	0.015
c. Cement			•	o tiles faith	0 013	210	0.016
1. Neat, surface	0.010	0.011	0.013		20.0	0.00	0.00
2. Mortar	0.011	0.013	0.015	3. Finished, with gravel on bottom	0.010	0.0	070.0
d. Concrete					0.014	0.017	0.020
	0.010	0.011	0.013	5. Gunite, good section	0.016	0.019	0.023
2 Calvert with hands connections	0 011	0.013	0.014	6. Gunite, wavy section	0.018	0.055	0.025
and some debuis		}		7. On good excavated rock	0.017	0.020	
	110	610	710	8. On irregular excavated rock	0.022	0.027	
o. Finished	0.01	20.0	710.0	d. Concrete bottom float finished with			
4. Sewer with manholes, inlet, etc.,	0.013	010.0	0.017				
straight				1 Descend stone in morter	0 015	0 017	0.020
5. Unfinished, steel form	0.012	0.013	0.014		210.0	020	0 024
6. Unfinished, smooth wood form	0.012	0.014	0.016		910	20.0	0.024
7. Unfinished, rough wood form	0.015	0.017	0.020		0.00	0.020	000
c. Wood				4. Cement rubble masonry	0.020	0.000	0.090
1. Stave	0.010	0.012	0.014	5. Dry rubble or riprap	0.020	0.090	0.09
2. Laminated, treated	0.015	0.017	0.020	e. Gravel bottom with sides of		8	0.005
f. Clay					0.017	0.020	0.00
1. Common drainage tile	0.011	0.013	0.017	2. Random stone in mortar	0.020	0.023	0.020
2. Vitrified sewer	0.011	0.014	0.017	3. Dry rubble or riprap	0.023	0.033	0.030
3. Vitrified sewer with manholes, inlet.	0.013	0.018	0.017	f. Brick	;	-	,
ota o	!			1. Glased	0.011	0.013	0.015
4 Vitrified subdrain with onen ioint	0.014	0.016	0.018	2. In cement mortar	0.012	0.016	0.018
To This land but with open jours		25.5		a. Masonry			
9. Dickwork	110	0 018	310 0		0.017	0.025	0.030
1. Citation 1		20.0	210	2. Dry rubble	0.023	0.032	0.035
Z. Laned With cement mortar	0.012	9 6	910.0	A. Dreesed ashlar	0.013	0.015	0.017
A. Sanitary sewers coated with sewage	0.012	6.013	0.010				
slimes, with bends and connections		,	80		0.013	0.013	
i. Paved invert, sewer, smooth bottom	0.016	0.019	0.020	The Date of the Control of the Contr	0.016	0 018	
j. Rubble masonry, cemented	0.018	0.025	0.030	Z. mough	030	5	0 500
				J. Vegetal lining	4.000	:	٠. ٥

0.040 0.045 0.050

0.030 0.035 0.040

0.020 0.025 0.030 0.070 0.060 0.080 0.110 0.160

0.050 0.050 0.060 0.070 0.100

0.035 0.035 0.040 0.045 0.200 0.050

0.150

0.110 0.030 0.080

0.060

0.050

0.080

0.160

0.120

0.100

0.035 0.050

0.030 0.035

0.025

VALUES OF THE ROUGHNESS COEFFICIENT n (continued)

Minimum Normal Maximum

VALUES OF THE ROUGHNESS COEFFICIENT n (continued)

0.050

0.040

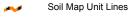
0.030

0.050

Type of channel and description	Minimum	Normal		
			Maximum	Type of channel and description
C Excavamen on Despose				b. Mountain streams, no veretation in
C. Locatain on Landucking				channel. banks usually steen, trees
d. Laren, Suraigne and unnorm	910 0	010	8	and heigh along hanks githmarged at
	0.016	0.010	0.080	List de se
		0.022	0.020	nign stages
3. Gravel, uniform section, clean	=	0.025	0.030	1. Bottom: gravels, cobbles, and few
With short grass, few weeds	0.022	0.027	0.033	boulders
 Earth, winding and sluggish 				2. Bottom: cobbles with large boulders
1. No vegetation	0.023	0.025	0.030	D-2. Flood plains
2. Grass, some weeds	0.028	0.030	0.033	a. Pasture, no brush
		0.035	0.040	1. Short grass
deep channels				2. High grass
4. Farth bottom and rubble sides	des 0.028	0.030	0.035	b. Cultivated areas
	_	0.035	0.040	1. No crop
	_	0.040	0.050	2. Mature row crops
				3. Mature field crops
	0.025	0.028	0.033	c. Brush
2. Light brush on banks	0.035	0.050	0.060	 Scattered brush, heavy weeds
d. Rock cuts				2. Light brush and trees, in winter
1. Smooth and uniform	0.025	0.035	0.040	3. Light brush and trees, in summer
2. Jagged and irregular	0.035	0.040	0.050	4. Medium to dense brush, in winter
e. Channels not maintained. weeds and	_			
brush uneut				d. Trees
1. Dense weeds, high as flow depth	lepth 0.050	0.080	0.120	 Dense willows, summer, straight
2. Clean bottom, brush on sides		0.050	0.080	2. Cleared land with tree stumps, no
		0.000	0.110	sprouts
4. Dense brush, high stage	0.080	0.100	0.140	3. Same as above, but with heavy
D. NATURAL STREAMS				growth of sprouts
D-1. Minor streams (top width at flood stage	od stage			4. Heavy stand of timber, a few down
<100 ft)	,			trees, little undergrowth, flood stage
a. Streams on plain				
1. Clean, straight, full stage, no rifts or	o rifts or 0.025	0.030	0.033	5. Same as above, but with flood stage
				reaching branches
2. Same as above, but more stones and	ones and 0.030	0.035	0.040	D-3. Major streams (top width at flood stage
				>100 ft). The n value is less than that
3. Clean, winding, some pools and	ols and 0.033	0.040	0.045	for minor streams of similar description,
				because banks offer less effective resistance.
Same as above, but some weeds and	eeds and 0.035	0.045	0.050	a. Regular section with no boulders or
stones				
5. Same as above, lower stages, more	es, more 0.040	0.048	0.055	 Irregular and rough section
		0.020	0.060	
		0.00	ر 080 د	
8. Very weedy reaches, deep pools, or	pools, or 0.075	0.100	0.150	
floodways with heavy stand of tim-	l of tim-			
ber and underbrush				

0.060

0.025


MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

... Gravelly Spot

Candfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

+ Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

Stony Spot

Very Stony Spot

Spoil Area

Wet Spot
 Other
 Othe

Special Line Features

Water Features

Δ

Streams and Canals

Transportation

+++ Rails

Interstate Highways

~

US Routes
Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:25.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

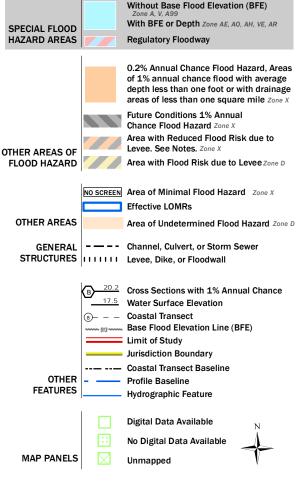
Soil Survey Area: Middlesex County, Massachusetts Survey Area Data: Version 18, Sep 7, 2018

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Aug 10, 2014—Sep 19. 2014

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend


Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
1	Water	59.1	32.5%
51A	Swansea muck, 0 to 1 percent slopes	7.5	4.1%
52A	Freetown muck, 0 to 1 percent slopes	25.9	14.3%
603	Urban land, wet substratum	1.0	0.5%
626B	Merrimac-Urban land complex, 0 to 8 percent slopes	12.7	7.0%
629C	Canton-Charlton-Urban land complex, 3 to 15 percent slopes	2.4	1.3%
652	Udorthents, refuse substratum	6.4	3.5%
656	Udorthents-Urban land complex	66.8	36.7%
Totals for Area of Interest	,	181.8	100.0%

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 10/2/2018 at 9:24:28 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

HALEY	H TEST PIT LOG	Test Pit	No. TP-1
Project	200 QUANNAPOWITT PARKWAY REDEVELOPMENT	File No.	134635-005
Location	WAKEFIELD, MA	H&A Rep	S. Shav
Client	Cabot, Cabot, & Forbes	пож кер	C. Only
Contractor	EARTHWORK INDUSTRIES, INC.	Date	3 Jun 2021
Equipment Us	sed Doosan DX85R	Weather	Partly Cloudy 70's

Groundwater depths/entry rates (in./min.): Seenage 2' / Rapid

Partly Cloudy 70's

Weather

Ground El.: 83.0 e		ı	_ocation : Se	e Plan		ndwater depths/entr ration at 7.2 ft	y rates	(in.	./mi	in.):	S	eep	oag	e 2'	/Ra	apic	ţ
_	Stratum							Gra	vel	S	and		Т	Fie	ld Te	ests	_
Sample ID	Change (JSCS ymbol	(Color CDC	OUP NAME & SYME structure, odor, mo GEOLOGIO	OL, % oversiz pisture, optiona INTERPRET			ge		% Coarse		% Fine	% Fines	Dilatancy	SS		Τ
0					ASPHALT-												İ
	0.3	SP- SM	Brown poorly no structure,		n silt (SP-SM)	, 2% oversized, mps 3	.5 in.,	5	10	20	20	35 1	10				
- 2 -					-FILL-												
- 4 -	4.0	 SM	Gray silty SAN be placed laye moist	ND with gravel (SN ers of similar mate	//), 10% overs rial in lifts 1.5	ized, mps 1.0 ft, apper to 2.5 ft thick, no odo	ars to	10	10	15	110 :	35 2	20				
- 6 -					-FILL-												
- 8 -	7.6			d structure, no odo		rsized, mps 1/16 in.,					20	80					
	8.5			воттом оғ	EXPLORATI	ON 8.5 FT											
Obstructions: None	e	Rem		d test tip backfill, full	asphalt				ests							<u> </u>	
		163(0)	· C.			Dry Strength N - Nor	L - L I - Nonpla	stic	М L-	- Mo	/ M	m I - Me	H - ediu		ո H - H	_	
Standing W		mpleted	d Pit	Diameter (in.)	Boulders Number	<u>s</u> Approx. Vol. (cu.ft)											
at depth measured after	5.8 0.25	fi h	t nours elapsed	12 to 24 over 24	2 1	= 2		Test Pit Dimensions (ft) Pit Length x Width (ft) 12 X 4.2 Pit Depth (ft) 8.5									

NOTE: Soil identification based on visual-manual methods of the USCS system as practiced by Haley & Aldrich, Inc.

HALEY	H TEST PIT LOG	Test Pit	No. TP-2
Project	200 QUANNAPOWITT PARKWAY REDEVELOPMENT	File No.	134635-005
Location	WAKEFIELD, MA	H&A Rep	S. Shay
Client	Cabot, Cabot, & Forbes	под кер	e. enay
Contractor	EARTHWORK INDUSTRIES, INC.	Date	3 Jun 2021

Partly Cloudy 70's

Groundwater depths/entry rates (in./min.): 7.0' / Rapidly Ground El.: 83.5 est. Location: See Plan

Doosan DX85R

Equipment Used

£		Stratum		VISI	JAL-MANUAI IDEN	TIFICATION	AND DESCRIPTION	Gr	avel		Sano	<u></u>		Field		:sts
Depth (ft)	Sample ID	Change Elev./ Depth (ft)	USCS Symbo	(Calar ODG	DUP NAME & SYMB	OL, % oversiz	zed, maximum particle siz al descriptions	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	sepilli6no i	Plasticity
0 -					-4	ASPHALT-										_
		0.3	SP- SM	Brown poorly mps 9.0 in., n	graded SAND with o structure, no odd	silt and grav or, dry	vel (SP-SM), 5% oversiz	ed, 10	10	15	15	40	10			
						-FILL-										
2 -																
		3.0	SM	Yellow-brown	silty SAND (SM),	no oversized	, mps 1/8 in., no structu	re,	T	5	5	60	30			
		3.3	SP	Brown poorly	appear to be placed graded SAND (SP) I structure, no odoi), no oversiz	ed, mps 1.0 in.,	/	10	20	40	25	5			• -
4 -		4.0	 SM	Gray-brown si structure, no o	ilty SAND with graved or, moist	vel (SM), 15	% oversized, mps 1.3 ft	no 10	10	10	10	35	25			• •
6 -																
		7.0	OL/ OH	Dark brown O	RGANIC SOIL (O	L/OH), no ov	versized, mps 0.5 in., no isturbed 15% fibers					10	90	- +	+	
		7.4	SP		tructure, no odor, v		rsized, mps 1/16 in.,				20	80				
8 -		8.0			BOTTOM OF											
			<u> </u>				T		<u> </u>	<u></u>						=
Obstru	ctions: Non	e	rest		test tip backfill, full	asphalt	Dilatancy Toughness Plasticity N Dry Strength N - None	R - R L - Low Nonplasti	apid N	S 1 - N - Lo	/ledio	um VI - N	H - ⁄lediu	ım H	- Hiç	
	Standing V	Vater in (Complete	ed Pit	l	Boulder	<u>'s</u>							ns (ft	_	_
at d	epth	4.9	-	ft	Diameter (in.)	Number 2	Approx. Vol. (cu.ft) = 2.1	Pit Len								

HA-LIB09-BOS - COPY2.GLB HA-TP07-1.GDT K:\SULLIVAN\134635-005_TP.GPJ HA TESTPIT-09

12 to 24 measured after 2.0 hours elapsed 8.0 Pit Depth (ft) over 24 NOTE: Soil identification based on visual-manual methods of the USCS system as practiced by Haley & Aldrich, Inc.

HALEY	H TEST PIT LOG	Test Pit	No. TP-3
Project	200 QUANNAPOWITT PARKWAY REDEVELOPMENT	File No.	134635-005
Location	WAKEFIELD, MA	H&A Rep	S. Shay
Client	Cabot, Cabot, & Forbes	noa kep	o. ondy
Contractor	EARTHWORK INDUSTRIES, INC.	Date	2 Jun 2021
Equipment Us	sed Doosan DX85R	Weather	Partly Cloudy 70's

Partly Cloudy 70's

Weather

Groundwater depths/entry rates (in./min.): 7.0' / Rapidly Ground El.: 84 est. Location: See Plan

ınd El.: 84 es			Location: S	see Plan		Groun	uwater de	puis/enu y	y rates	(111)	./1111		•	7.0	/ Ra	apio	ııy		
atum: NAV	D88																		
Sample ID	Change Elev./ Depth	uscs	(0.105	ROUP NAME & S	SYMBOL, % o	oversized optional	d, maximum descriptions	particle siz	e,			-		Fine	Fines		SS		Strength
	(π)									%	%	%	%	%	%		ř	₫	<u>છ</u>
	0.2			-GF			SE-		-										
	0.4	SP- SM	Brown poorl mps 6.0 in.,	y graded SANE no structure, r	O with silt and odor, mois	d gravel st	(SP-SM),	5% oversiz	zed,	5	15	15	15	40	10				
					-FILL	-													
	2.0	SP				gravel (S	SP), 5-8% (oversized, i	mps	5	10	10	40	30	5		_		
	4.0		Gray silty S/ structure, no	AND with grave o odor, moist	el (SM), 5% (oversize	-d, mps 8.0	<u></u>		5	10	10	15	40	20	_	_		
					-FILL	-													
	6.7	SM	Olive-gray s	ilty SAND (SM)), 2-4% over ace fibers	sized, m	nps 4.0 ft, r	no structure	e,		10	10	35	30	15				
	0.7		Cong. A organi			_ DEPO	SITS-												
	7.5			BOTTOM	1 OF EXPLO	RATIO	N 7.5 FT												
uctions: None	<u> </u>	Ren	marks: Standa	ard test tip backfi	ill, full asphalt	t T			Fie	ld T	ests	<u></u>							
	-	_		,			Plasticity	N	L - I Nonpla -	Low astic	М : L-	l - N - Lo	1edii w 1	um M - N	H - ∕lediı	Higl um	h H - F	_	 1
Standing Volepth easured after	7.0 0.5	•	ft	12 to 24	(<u>in.)</u> Numl 2	<u>ber</u> A	2	. (cu.ft)		_enç	gth >	x W		h (ft) 1		_	,	
	Sample ID Standing Volepth easured after	Sample ID Stratum Change Elev./ Depth (ft) 0.2 0.4 2.0 3.1 4.0 Standing Water in elepth 7.0 pasured after 0.5	Sample Stratum Change Elev./ Depth (ft) Symbol	Sample ID Stratum Change Elev./ Depth (ft) 0.2 0.4 SP-SM Brown poor mps 6.0 in., SP-SM Gray silty S. structure, not structure, not standard or gray silty for gan structure, not standard or gray silty for gray silty fo	Sample ID USCS Symbol (Color GROUP NAME & structure, or GEOL GEOL GEOL GEOL GEOL GEOL GEOL GEOL	Sample ID Stratum Change Elevy Depth (Color GROUP NAME & SYMBOL, % Symbol Open Structure, odor, moisture, GEOLOGIC INTER GEOLO	Sample ID Stratum Change Elev Juscs Elev Jusch (Color GROUP NAME & SYMBOL, % oversized structure, odor, moisture, optional GEOLOGIC INTERRETA O.2 SP-SM Brown poorly graded SAND with silt and gravel mps 6.0 in., no structure, no odor, moist FILL- 2.0 SM Gray silty SAND with gravel (SM), 5% oversized structure, no odor, moist 4.0 SM Gray silty SAND with gravel (SM), 5% oversized structure, no odor, moist 4.0 SM Gray silty SAND with gravel (SM), 5% oversized structure, no odor, moist FILL- SM Olive-gray silty SAND (SM), 2-4% oversized, no slight organic odor, wet, trace fibers -GLACIOFLUVIAL DEPO 7.5 Remarks: Standard test tip backfill, full asphalt restore. Standing Water in Completed Pit lepth 7.0 ft assured after 0.5 hours elapsed over 24 0 12 to 24 2 and 12 t	Sample Elev / Depth (ti) Sample Elev / Depth (ti) 0.2 0.4 0.5 SP SM Srown poorly graded SAND with gravel (SP), 5-8% of 10.0 in., no structure, no odor, moist 4.0 SM Sructure, no odor, moist 4.0 SM Sight organic odor, wet, trace fibers -GLACIOFLUVIAL DEPOSITS- 7.5 Remarks: Standard test tip backfill, full asphalt restore. Standing Water in Completed Pit lepth 7.0 ft assured after 0.5 hours elapsed of the standard restore. Standing Water in Completed Pit lepth 7.0 ft assured after 0.5 hours elapsed of the structure in the	Sample ID Symbol Symbol (Color GROUP NAME & SYMBOL., % oversized, maximum particle siz structure, odor, moistructure, odor, mo	Sample Stratum Change USCS Elev / Dieght (ft) Symbol Color GROUP NAME & SYMBOL, % oversized, maximum particle size, structure, odo, moisture, uptional descriptions (Color GROUP NAME & SYMBOL, % oversized, maximum particle size, structure, odo, moisture, uptional descriptions (Color GROUP NAME & SYMBOL, % oversized, maximum particle size, structure, odo, moisture, uptional descriptions (Color RTERPRIAT ATTON) ASPHALT	Sample USCS USCS	Sample Stratum Claim Cla	Sample USCS USCS USCS USCS USCS USCS Color GROUP MAME & SYMBOL & verticated, maximum particle size. Symbol USCS Symbol Color GROUP MAME & SYMBOL & verticated, maximum particle size. Symbol Structure, non-motisture, optional descriptions Symbol Symbol Color GROUP MAME & SYMBOL & verticate, maximum particle size. Symbol Symbol Color GROUP MAME & SYMBOL & verticated, maximum particle size. Symbol Symbol Color GROUP MAME & SYMBOL & verticate, maximum particle size. Symbol Symbol Symbol Color GROUP MAME & SYMBOL & verticate, maximum particle size. Symbol Sym	Sample Stratum Charge Symbol USCS Symbol Color GROUP NAME & SYMBOL % oversized, maximum particle size, structure, one of structure, one motisture, optional descriptions Size Size	Sample Stratum NAVD88	Standing Standing	Statum Sample Statum S	Startum NAVD88	Statum NAVD88

NOTE: Soil identification based on visual-manual methods of the USCS system as practiced by Haley & Aldrich, Inc.

HA TESTPIT-09 HA-LIB09-BOS - COPY2.GLB HA-TP07-1.GDT K/SULLIVAN/134635-005_TP.GPJ

15 Jun 21

HALEY	H TEST PIT LOG	Test Pit	No. TP-4	
Project	200 QUANNAPOWITT PARKWAY REDEVELOPMENT	File No.	134635-005	
Location	WAKEFIELD, MA	H&A Rep	S. Shay	
Client	Cabot, Cabot, & Forbes	пож кер	o. onay	
Contractor	EARTHWORK INDUSTRIES, INC.	Date	2 Jun 2021	
Equipment Us	sed Doosan DX85R	Weather	Partly Cloudy 70's	

Gro	und El.: 85.5	est.		Location: Se	e Plan		ndwater depths/entr	y rates (n./m	in.)	:	Hea	vy s	seep	age	at
EI. [Datum: NAV	/D88				2 an	d 3 ft									
Œ		Stratum			JAL-MANUAL IDENT	IFICATION A	ND DESCRIPTION		ravel		Sanc	_t		Fiel		ests
Depth	Sample ID	Change Elev./ Depth (ft)	USCS Symbo		OUP NAME & SYMBO structure, odor, mois GEOLOGIC I	sture, optiona	ed, maximum particle sized, maximum particle sized state (in the sized). ATION)	ze,	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity Strength
- 0			OL/ O	H Dark brown sa no structure, r	andy ORGANIC SO no odor, moist, heav	IL (OL/OH), yy root mate	no oversized, mps 2.0 rial) in.,				30	70			
- 1					-TOP	SOIL/FILL-										
		1.2	SM	Light brown si odor, moist	ilty SAND (SM), no	oversize, mp	os 2.5 in., no structure	e, no 5 10 10 20 40 15 10 10 20 20 40								
- 2	-	1.5	SP-SM	Mixed layer of		-FILL- kets of dark P-SM)	prown to brown poorly		0 10	20	20	40				
- 3	-	3.3	SM	Olive-brown si	ilty SAND (SM), no	oversized, n	ps 2.0 ft, no structure, no 5 5 20 20 30 20									
- 4	_			Note: Encount	ter 0.5 in. copper pi	pe across th	e floor of the test pit.									
- 5	-	5.0			BOTTOM OF E	XPLORATION	ON 5.0 FT				H	\vdash	\dashv			
5																
Obst	ructions: 0.5 i	n. coppe	r Re		d test tip backfill, full a	sphalt		Field	Test	s						
pipe	at 5 ft		res	tore.			Dilatancy Toughness Plasticity N Dry Strength N - Nor	L - Lo I - Nonplas	ic L	/I - N - Lo	/ledic	um M - N	H - ⁄lediu		1 - H	-
	Standing V	Vater in	Complet	ted Pit	Diameter (in.)	Boulders Number	Approx. Vol. (cu.ft)							ns (f		
= I	depth easured after	3.6 0.5		ft												
					1 010127		U	, 5	1 /	-/						

HA TESTPIT-09 HA-LIB09-BOS - COPY2.GLB HA-TP07-1.GDT K3.SULLIVAN/134635-005_TP.GPJ 15 Jun 21

NOTE: Soil identification based on visual-manual methods of the USCS system as practiced by Haley & Aldrich, Inc.

HALEY	H TEST PIT LOG	Test Pit	No. TP-5
Project	200 QUANNAPOWITT PARKWAY REDEVELOPMENT	File No.	134635-005
Location	WAKEFIELD, MA	H&A Rep	S. Shay
Client	Cabot, Cabot, & Forbes	под кер	o. onay
Contractor	EARTHWORK INDUSTRIES, INC.	Date	2 Jun 2021
Equipment Us	ed Doosan DX85R	Weather	Partly Cloudy 70's

Groundwater depths/entry rates (in./min.): 2.0' / Rapidly Ground El.: 84 est. Location: See Plan

El. Da	atum: NAV	′D88													
t)		Stratum		VISUAL-MANUAL IDENTIFICA	ATION AND DESCRIPTION	Gra	avel	,	San	d		Fie	eld T	ests	;
Depth (ft)	Sample ID	Change Elev./ Depth (ft)	USC Symb	S (Calar ODOLID NAME & CVAIDOL %	oversized, maximum particle size, optional descriptions	% Coarse	% Fine	ě		_	% Fines	Dilatancy	S		Strength
- 0 -				-ASPH	ALT-						П				
		0.2	SP- S	Brown poorly graded SAND with silt a mps 5.0 in., no structure, no odor, mo		5	15	20	20	30	10				
- 1 -				-FIL	L-										
		1.5	SP	Olive-brown poorly graded SAND with 2.0 in., no structure, no odor, moist		† -	10	20	35	30	5				<u> </u>
- 2 -		1.8	OL/ C	H Dark brown sandy ORGANIC SOIL (C no structure, slight organic odor, wet, disturbed					5	30	65				
		2.5	SM	Gray-brown silty SAND with gravel (S structure, no odor, wet	M), 10% oversized, mps 9.0 in., no	5	15	10	15	30	25				
- 3 -				-FIL	L-										
- 5 -		5.0		BOTTOM OF EXPL	ODATION E O ET										
		5.0		BOTTOW OF EAPL	ONATION 3.0 FT										
			Ι			<u> </u>		_	<u></u>	<u></u>	Ш			_	<u></u>
Obstru	uctions: Non	e		emarks: Standard test tip backfill, full asphatore.	Dilatancy	R - Ra - Low	apid	S	S - SI /ledi			- Noi - Hig			

K:\SULLIVAN\134635-005_TP.GPJ HA-LIB09-BOS - COPY2.GLB HA-TP07-1.GDT HA TESTPIT-09

15 Jun 21

Dry Strength $\,$ N - None $\,$ L - Low $\,$ M - Medium $\,$ H - High $\,$ V - Very High **Boulders Standing Water in Completed Pit** Test Pit Dimensions (ft) Diameter (in.) Number Approx. Vol. (cu.ft) at depth Pit Length x Width (ft) 4.3/3.6 12 to 24 0 0 0.5/1.0 5.0 measured after hours elapsed Pit Depth (ft) over 24 NOTE: Soil identification based on visual-manual methods of the USCS system as practiced by Haley & Aldrich, Inc.

Plasticity

N - Nonplastic L - Low M - Medium H - High

HALEY	H TEST PIT LOG	Test Pit	No. TP-6
Project	200 QUANNAPOWITT PARKWAY REDEVELOPMENT	File No.	134635-005
Location	WAKEFIELD, MA	H&A Rep	S. Shay
Client	Cabot, Cabot, & Forbes	пож кер	o. ondy
Contractor	EARTHWORK INDUSTRIES, INC.	Date	2 Jun 2021
Equipment Us	sed Doosan DX85R	Weather	Partly Cloudy 70's

Partly Cloudy 70's

5.5

Pit Depth (ft)

Groundwater depths/entry rates (in./min.): 2.5' / Rapidly Ground El.: 83.5 est. Location: See Plan

	IIIU EI 03.3			Location. Se	ee Plati		roundwater department of the			,	•	2.5	/ 130	apiu	пу		
El. D	atum: NAV	D88							Gravel Sand Field Tests								
Depth (ft)	Sample ID	Stratum Change Elev./ Depth (ft)		(Calar OD	ROUP NAME & SYMB structure, odor, mo	BOL, % ove	ON AND DESCRIPTION ersized, maximum particle size, tional descriptions RETATION)	% Coarse		% Coarse	Sand Wedium %	% Fine	% Fines		Toughness A		Strength
- 0 -			OL/ OF		sandy ORGANIC S , no odor, wet, heav		OH), no oversize, mps 1.0 in., terial					1 1	70				
					-TC	PSOIL/F	ILL-										
- 1 -		0.8	SP		n poorly graded SAI ps 1/2 in., no struct		ilt and gravel (SP-SM), no dor, wet	- -	5	T	45	45	5				
		1.6	SM	Olive-gray sil		el (SM), 1	0% oversized, mps 3.0 in., no	10	10	10	15	25	30		_		_
- 2 -		2.0	SM	Dark brown s		ivel (SM),	2% oversized, mps 4.0 in., no	-	10	20	20	30	15		\vdash		
		2.3	SP- SN	1		-FILL-	t and gravel (SP-SM), 15%	10	10	15	15	40	10				
- 3 -				oversized, m	ps 6.0 in., no struct	ture, no o	dor, wet										
- 4 -					-GLACIOF	LUVIAL [DEPOSITS-										
		4.5	SM	Light gray-bro	own silty SAND (SI	M) — — —		5	5	10	15	45	20				
- 5 -																	
		5.5			BOTTOM OF	EXPLOR	ATION 5.5 FT										
Obstru	uctions: None	e e	Re	marks: Standar	rd test tip backfill, full	l asphalt		Field T	Lest:	<u>—</u> s	_	<u> </u>			<u> </u>		_
	77 77 77		_	ore.		·	1 ~	R - Ra Low nplastic · Low N	· M	Л - N - Lo	w I	um M - N	H - Mediu		h H - F	_	1
	Standing V	Vater in (Complet	ed Pit	Diameter /in \	Boul Numbe		I	est	Pit	Dir	nen	sio	ns (ft)		
at o	depth	3.5		ft	Diameter (in.)	NUTTIDE	er Approx. Vol. (cu.ft)	it Len	gth	χV	√idtˈ	h (ft	.) 1	10 X	(4		

K:\SULLIVAN\134635-005_TP.GPJ HA-LIB09-BOS - COPY2.GLB HA-TP07-1.GDT HA TESTPIT-09

measured after

0.5

ft

hours elapsed

12 to 24

over 24

NOTE: Soil identification based on visual-manual methods of the USCS system as practiced by Haley & Aldrich, Inc.

15 Jun 21

HALEY	H TEST PIT LOG	Test Pit	No. TP-7
Project	200 QUANNAPOWITT PARKWAY REDEVELOPMENT	File No.	134635-005
Location	WAKEFIELD, MA	H&A Rep	S. Shay
Client	Cabot, Cabot, & Forbes	под кер	o. only
Contractor	EARTHWORK INDUSTRIES, INC.	Date	2 Jun 2021
Equipment Us	sed Doosan DX85R	Weather	Partly Cloudy 70's

Partly Cloudy 70's

Groundwater depths/entry rates (in./min.): 3.0' / Rapidly Ground El.: 84 est. Location: See Plan

				2004.01 CCC Flair	. ,	•		,		0.0	,	ар.с	,		
El. Da	atum: NAV	D88						_			$\overline{}$				4
Depth (ft)		Stratum Change Elev./		VISUAL-MANUAL IDENTIFICA (Color GROUP NAME & SYMBOL, % structure, odor, moisture	oversized, maximum particle size,	% Coarse	wel we were	ě	San Wedium %		% Fines	Dilatancy 📜	Toughness P		
	טו	Depth (ft)			GEOLOGIC INTERPRETATION)				× %	% Fi	% Fi	Dilat	noL	Plas	Stre
- 0 -				-ASPH.	ALT-										
		0.3	SM	Brown silty SAND with gravel (SM), 2 structure, no odor, dry	0% oversized, mps 6.5 in., no	10	15	15	15	30	15				
- 1 -				-FIL	L-										
			SM	Gray silty SAND with gravel (SM), 10 ^o structure, no odor, moist	% oversized, mps 4.0 in., no	5	15	15	15	35	15				
- 2 -			SM	Gray silty SAND with gravel (SM), 5%	oversized mps 1.0 in no	5	10	15	15	35	20				
- 3 -			Sivi	structure, no odor, moist	oversized, mps 1.0 m., no						20				
		3.2	SP- SN	Olive-brown poorly graded SAND with 3.5 in., no structure, no odor, wet, pos		5	5	10	35	35	10		_		
- 4 -				-FIL											
		4.2	SP	Olive-brown poorly graded SAND (SP stratification, no odor, wet), no oversized, mps 1/2 in., weak	5	5	15	35	35	5				
- 5 -				GLACIOFLUVIA	L DEPOSITS-										
		5.5		BOTTOM OF EXPL	ORATION 5.5 FT	+					\vdash				
Obstru	ıctions: None	e		marks: Standard test tip backfill, full aspha	alt F	ield T	ests	3							
			rest	ore.	· · · · · · · · · · · · · · · · · · ·	R - Ra - Low	•		S - S ⁄ledi			- Noi - Hig			

15 Jun 21

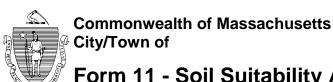
K:\SULLIVAN\134635-005_TP.GPJ

HA TESTPIT-09 HA-LIB09-BOS - COPY2.GLB HA-TP07-1.GDT

Obstructions: None		Standard test tip backfill, full asphalt		Field Tests
	restore.		Dilatancy Toughness Plasticity Dry Strength	R - Rapid S - Slow N - None L - Low M - Medium H - High N - Nonplastic L - Low M - Medium H - High N - None L - Low M - Medium H - High V - Very High

Boulders Standing Water in Completed Pit Test Pit Dimensions (ft) Diameter (in.) <u>Number</u> Approx. Vol. (cu.ft) Pit Length x Width (ft) 10 X 4 at depth 4.2/3.7 12 to 24 0 measured after 1.0/2.0 hours elapsed Pit Depth (ft) 5.5 over 24 NOTE: Soil identification based on visual-manual methods of the USCS system as practiced by Haley & Aldrich, Inc.

HALEY	H TEST PIT LOG	Test Pit	No. TP-8
Project	200 QUANNAPOWITT PARKWAY REDEVELOPMENT	File No.	134635-005
Location	WAKEFIELD, MA	H&A Rep	S. Shav
Client	Cabot, Cabot, & Forbes	под кер	o. onay
Contractor	EARTHWORK INDUSTRIES, INC.	Date	2 Jun 2021
Equipment Us	ed Doosan DX85R	Weather	Partly Cloudy 70's


	Ground El.: 83 est. Location: See Plan Groundwater depths/entry rat seepage pockets 1.0, 1.5, and					es (in./min.): Rapidly at 3.5 ', fast 2.7'						t					
EI. D	atum: NAV	D88							avel			-					_
Depth (ft)		Stratum Change Elev./ Depth (ft)	USCS Symbo	(Calar ODG	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION Color GROUP NAME & SYMBOL, % oversized, maximum particle size, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)						% Medium		% Fines	Dilatancy	Toughness		Strength
- 0 -					-ASPHALT/GRAVEL BINDER BASE-										Ŧ		\equiv
		0.3	SP- SM	Brown poorly mps 6.0 in., n	Brown poorly graded SAND with silt and gravel (SP-SM), 30% oversized, mps 6.0 in., no structure, no odor, moist to wet							35	10				
- 1 -						-FILL-											
- 2 -		1.9	SP		oorly graded SAN ucture, no odor, w		vel (SP), 20% oversized, m	nps 5	15	10	40	25	5	_			
- 3 -		2.9	SM	structure, thou	Olive-gray silty SAND with gravel (SM), 2% oversized, mps 4.0 in., no structure, though difficult to fully characterize due to inflex of groundwater, no odor, wet							40	20				
- 4 -						-FILL-											
5		5.0			BOTTOM OF EXPLORATION 5.0 FT												
Obstru	Obstructions: None Remarks: Standard test tip backfill, full asphalt restore. Dilatancy R - Rapid S - Slow N - None Toughness L - Low M - Medium H - High Plasticity N - Nonplastic L - Low M - Medium H - High Dry Strength N - None L - Low M - Medium H - High V - Very High																
	Standing V	later in (Complet	ed Pit		Bould	ers		est							ı ııyı	\dashv
ato	depth	3.2/2.7	_	ft	<u>Diameter (in.)</u> 12 to 24	Number 0	Approx. Vol. (cu.ft) = 0	Pit Len									
me	1 121024 0 - 0 1						Pit Dep	oth (1	ft)		,	5.0					

HA TESTPIT-09 HA-LIB09-BOS - COPY2.GLB HA-TP07-1.GDT KASULLIVAN/134635-005_TP.GPJ

15 Jun 21

measured after 0.5/1.0 hours elapsed over 24 0 = 0 Pit Depth (ft)

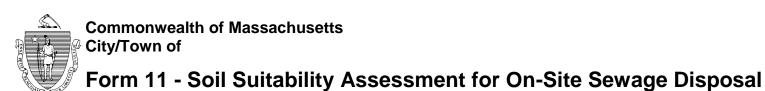
NOTE: Soil identification based on visual-manual methods of the USCS system as practiced by Haley & Aldrich, Inc.

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep Observation Hole Number: TP -1 Hole # Date

Soil Log


Depth (in)	Soil Horizon		Soil Matrix:	Redo	ximorphic Fea	atures		ragments Volume	Soil Structure	Soil Consistence	Other
Deptii (iii)	/Layer	(USDA)	Color-Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	oon on acture	(Moist)	Other
0 - 0.3	Asphalt										
0.3 - 4.0	Fill	Sandy loam	10 YR 4/4				20	10	Structureless	Friable	
4.0 - 7.6	Fill	Sandy loam	10 YR 4/1				25	15	Structureless	Friable	
7.6 - 8.5	С	Sand	5Y 4/1				0	0	Structureless	loose	Saturated

Additional Notes:

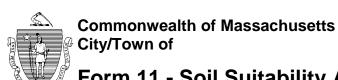
Rapid influx of water with organic odor at 7.2' during excavation

Standing water at 5.8' after 0.25 HR

Open pit viewed by W. Renault / Town Eng.

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep Observation Hole Number:	<u>TP - 2</u>	6/3/21
	Hole #	Date


Soil Log

Depth (in)	Soil Horizon	Soil Texture	Soil Matrix: Color-	Red	oximorphic Fea	tures		ragments Volume	Soil Structure	Soil Consistence	Other
Deptii (iii)	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Son Structure	(Moist)	Other
0-0.3	Asphalt										
0.3 - 3.0	Fill	Sandy loam	10 YR 5.4				20	10		Friable	
3.0 - 3.3	Fill	Silt Loam	2.5Y 5/4	3.0	7.54R 5/6	10	2	0		Very friable	Variagated Not assoc. w/ SHW
3.3 - 4.0	Fill	Sandy loam	2.5Y 4/2				10	0		Friable	Dense
4.0 - 7.0	Fill	Sandy loam	10 YR 4/3				15	5		Friable	
7.0 - 7.4	Organic fill	Clay loam	2.5Y 2.5/1				0	0		Very friable	40% organic
7.4 - 8.0	C	Sand	2.5Y 5/2				0	0	single-grain	loose	saturated

Additional Notes:

Rapid influx of water at 7.0' with organic odor during excavation

ESHW not apparent

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review	(minimum of tw	o holes required	d at every proposed	d primary and	reserve disposal area,
-------------------	----------------	------------------	---------------------	---------------	------------------------

Deep Observation Hole Number:	TP-3	6/2/21
	Hole #	Date

Soil Log

Depth (in)	Soil Horizon	Soil Texture	Soil Matrix: Color-	Redo	oximorphic Fea	tures		ragments Volume	Soil Structure	Soil Consistence	Other
Deptii (iii)	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Son Structure	(Moist)	Other
0 - 0.2	Asphalt										
0.2 - 0.4											0.2 - 0.4 coarse gravel binder base
0.4 - 2.0	Fill	Sandy loam	10 YR 4/3				30	5	Structureless	Friable	
2.0 - 4.0	Fill	Sandy loam	10 YR 5/4				25	2	Structureless	Friable	
4.0 - 6.5	Fill	Sandy loam	5Y 4/2				30	15	Structureless	Friable	trace roots
6.5 - 7.5	?	Sandy loam	7.5 YR 3/3				20	5	massive	Friable	10% saturated organic fibers

Additional Notes:

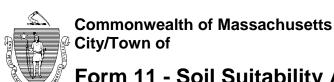
Standing water at 7.0' after 0.5 HR ESHW not apparent Photo of open pit sent via text to W. Renault / Town Eng.

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

6/2/21

Deep Observation Hole Number: Hole # Date

Soil Loa


Depth (in)	Soil Horizon	Soil Texture	Soil Matrix:	Redo	cimorphic Fea	atures		ragments /olume	Soil Structure	Soil Consistence	Other
Deptii (iii)	/Layer	(USDA)	Color-Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Son Structure	(Moist)	Other
0 - 1.2	(A) Topsoil / fill	Loam	7.5 YR 2.5 /1				15	4-5	Structureless	Friable	
1.2 - 1.5	Fill	Sandy loam	10YR 5/6				10	0	Structureless	very friable	
1.5 - 3.3	Fill	silt loam and sandy loam	7.5 YR 2.5/1 and 10 YR 5/2				20	10	Structureless	Friable	Mixed
3.3 - 5.0	В	sandy loam	2.5Y 5/2	4.5 - 5.0	7.5 YR 5/8	15	5	0	Structureless	Friable	May be variagated coloring

Additional Notes:

Standing water at 3.6 after 0.5 HR appears to be distinct mottles

Heavy seepage at 2.0 and 3.0'

Open pit viewed by W. Renault / town eng

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep Observation Hole Number:	TP-5	6/2/21
•	Hole #	Date

Soil Log

Depth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)	Redoximorphic Features			Coarse Fragments % by Volume		Soil Structure	Soil Consistence	Other
Deptii (iii)				Depth	Color	Percent	Gravel	Cobbles & Stones	Son Structure	(Moist)	Other
0 - 0.2	Asphalt										
0.2 - 1.5	Fill	Sand	10 YR 4/4				15	5	Structureless	Very friable	
	Fill	Sand	2.5Y 4/4				10	0	Structureless	Very friable	similar as above except saturate
	Fill	Loam	7.5 YR 3/1				5	0	Structureless	Friable	
	Fill	Silt loam	5Y 4/2				25	10	Structureless	Friable	2 boulders

Additional Notes:

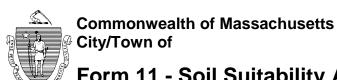
Water entering pit rapidly at 2.0' Standing water at 4.3' after 0.5HR / 3.6 after 1.0 HR

Copper pipe at bottom of pit

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep Observation Hole Number: TP-6 Hole # 6/2/21 Date

Soil Log


Depth (in)	Soil Horizon	Soil Texture (USDA)	Soil Matrix: Color-Moist (Munsell)	Redoximorphic Features				ragments Volume	Soil Structure	Soil Consistence	Other
	/Layer			Depth	Color	Percent	Gravel	Cobbles & Stones	Son Structure	(Moist)	Other
0 - 0.8	0	Loam	7.5 YR 2.5/1				0	0	Structureless	Loose	
0.8 - 1.6	Fill	Sandy loam	10 YR 5/4				10	0	Structureless	Friable	
1.6 - 2.0	Fill	Silt loam	7.5 YR 3/3				2	0	Structureless	very friable	disturbed
2.0 - 2.3	Fill	Sandy loam	7.5 YR 3/1				0	0	Structureless	very friable	disturbed
2.3 - 4.5	C1	Loamy sand	10 YR 5/3				12-15	2	massive	friable	Saturated
4.5 - 5.5	C2	Silt loam	2.5 Y 5/1				2	0	massive	friable	

Additional Notes:

Water entering pit at 2.5 rapidly / standing water at 3.5 after 0.5 HR

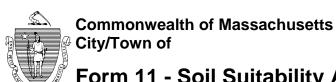
Open pit viewed by W. Renault / Town Eng

Unable to determine ESHW / mottling not apparent

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep Observation Hole Number:	TP-7	6/2/21
	Hole #	Date


Soil Log

Depth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)	Redoximorphic Features			Coarse Fragments % by Volume		Soil Structure	Soil Consistence	Other
Deptii (iii)				Depth	Color	Percent	Gravel	Cobbles & Stones	Jon Structure	(Moist)	Other
0 - 0.3	Asphalt										
0.3 - 1.3	Fill	very gravelly sandy loam	5 Y 4/2				40	0	Structureless	Friable	
1.3 - 2.5	Fill	sandy loam	7.5 YR 4/4				15	0	Structureless	Friable	
2.5 - 3.2	Fill	silt loam	2.5Y 5/3				10	10	Structureless	Friable	Angular Cobbles
3.2 - 4.2	Fill	sandy loam	10 YR 4/3				5	2	Structureless	Friable	Re-worked Material
4.2 - 5.5	С	loamy sand	2.5Y 4/3				5	0	massive	Friable	

Additional Notes:

Standing water at 4.2' after 1.0 HR / 3.7' after 2.0 HR

Open pit viewed by W. Renault / Town Eng

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

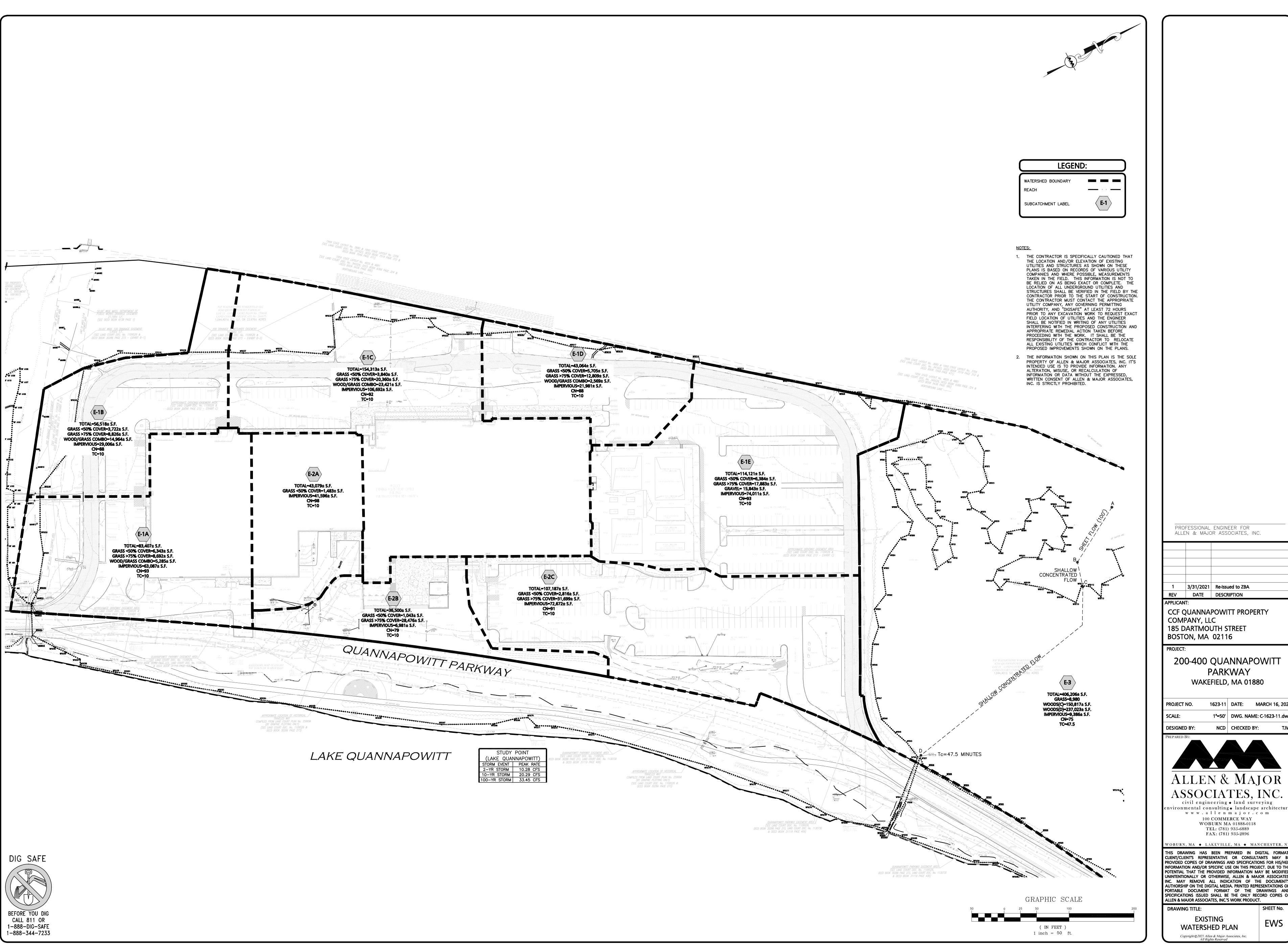
Deep Observation Hole Number:	TP-8	6/2/2021
·	Hole #	Date

Soil Log

Depth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)	Redoximorphic Features			Coarse Fragments % by Volume		Soil Structure	Soil Consistence	Other
Depth (in)				Depth	Color	Percent	Gravel	Cobbles & Stones	Soil Structure	(Moist)	Other
0-0.3	Asphalt w/ gravel under base										
0.3-1.9	Fill	Sandy loam					40	20	Structureless	Friable	
1.9-2.9	Fill	Sandy loam					20	5	Structureless	Friable	Trace roots*
2.9-5.0	Fill	Silt loam	54 5/1				5	2	Structureless	Friable	

Additional Notes: Standing water at 3.2 after 0.5 HR/2.7 after 1.0 HR

Water seepage from various pockets in fill at 1.0, 1.5, and 2.7 ft


*Varigated 7.5 YR 1/1 discontinuous

ES HW not apparent/ mottling at present

t5form11.doc • rev. 3/15/18 Upon pit viewed by W. Renault/Town Eng.

SECTION 6.0 – WATERSHED PLANS

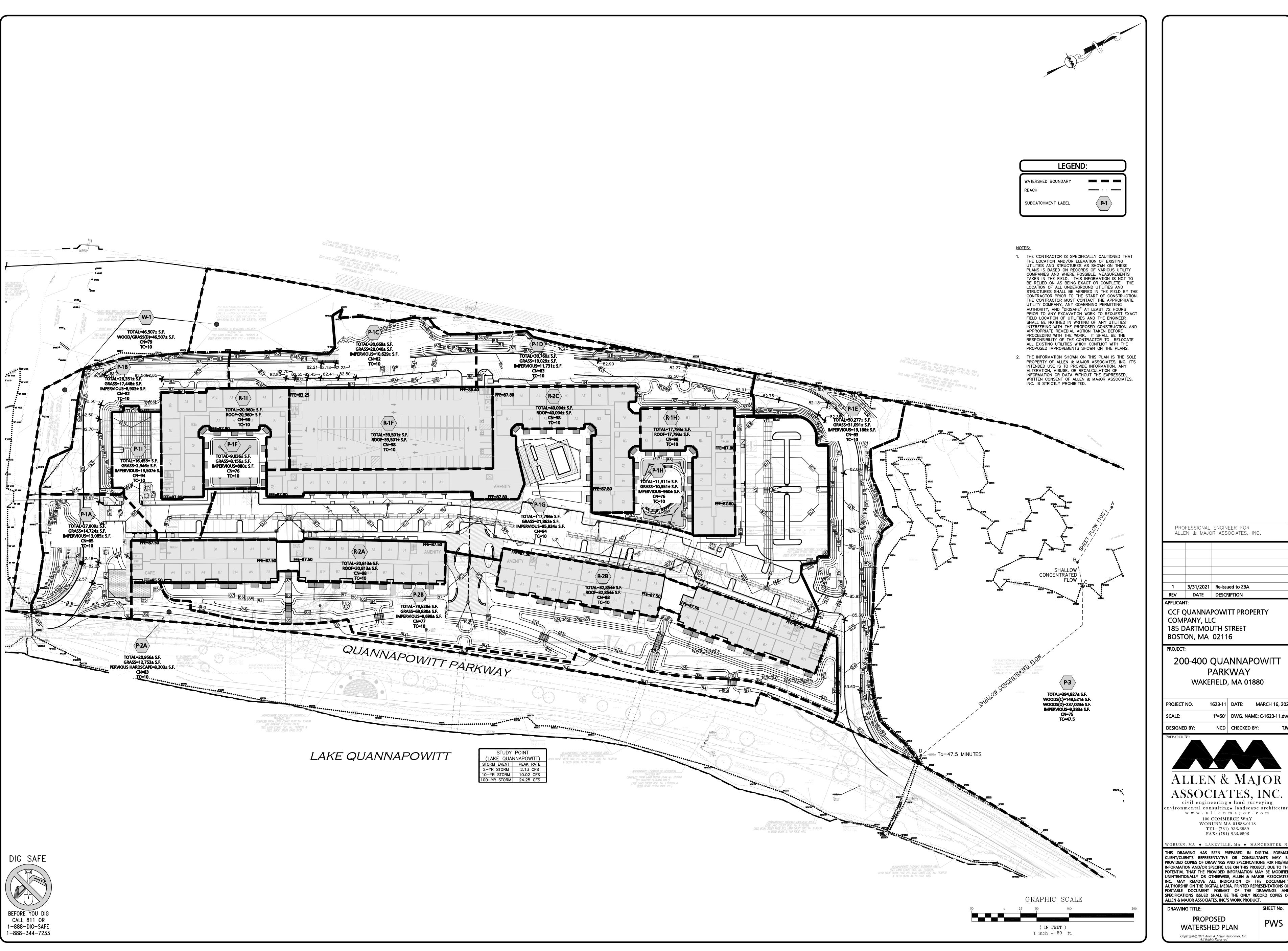
PROFESSIONAL ENGINEER FOR ALLEN & MAJOR ASSOCIATES, INC.

3/31/2021 Re-Issued to ZBA REV DATE DESCRIPTION

CCF QUANNAPOWITT PROPERTY COMPANY, LLC 185 DARTMOUTH STREET BOSTON, MA 02116

200-400 QUANNAPOWITT **PARKWAY** WAKEFIELD, MA 01880

1"=50' DWG. NAME: C-1623-11.dwg **DESIGNED BY:** NCD | CHECKED BY:


ASSOCIATES, INC. civil engineering ◆ land surveying nvironmental consulting • landscape architecture

www.allenmajor.com 100 COMMERCE WAY WOBURN MA 01888-0118 TEL: (781) 935-6889 FAX: (781) 935-2896

THIS DRAWING HAS BEEN PREPARED IN DIGITAL FORMAT CLIENT/CLIENT'S REPRESENTATIVE OR CONSULTANTS MAY BE PROVIDED COPIES OF DRAWINGS AND SPECIFICATIONS FOR HIS/HER INFORMATION AND/OR SPECIFIC USE ON THIS PROJECT. DUE TO THE POTENTIAL THAT THE PROVIDED INFORMATION MAY BE MODIFIED UNINTENTIONALLY OR OTHERWISE, ALLEN & MAJOR ASSOCIATES, INC. MAY REMOVE ALL INDICATION OF THE DOCUMENT'S AUTHORSHIP ON THE DIGITAL MEDIA. PRINTED REPRESENTATIONS OR PORTABLE DOCUMENT FORMAT OF THE DRAWINGS AND SPECIFICATIONS ISSUED SHALL BE THE ONLY RECORD COPIES OF ALLEN & MAJOR ASSOCIATES, INC.'S WORK PRODUCT.

EWS

DRAWING TITLE: **EXISTING** WATERSHED PLAN Copyright©2021 Allen & Major Associates, Inc.
All Rights Reserved

PROFESSIONAL ENGINEER FOR ALLEN & MAJOR ASSOCIATES, INC.

3/31/2021 Re-Issued to ZBA DATE DESCRIPTION

CCF QUANNAPOWITT PROPERTY COMPANY, LLC 185 DARTMOUTH STREET BOSTON, MA 02116

200-400 QUANNAPOWITT **PARKWAY** WAKEFIELD, MA 01880

NCD | CHECKED BY: **DESIGNED BY:**

ASSOCIATES, INC. civil engineering ◆ land surveying

nvironmental consulting • landscape architecture www.allenmajor.com 100 COMMERCE WAY WOBURN MA 01888-0118 TEL: (781) 935-6889 FAX: (781) 935-2896

THIS DRAWING HAS BEEN PREPARED IN DIGITAL FORMAT CLIENT/CLIENT'S REPRESENTATIVE OR CONSULTANTS MAY BE PROVIDED COPIES OF DRAWINGS AND SPECIFICATIONS FOR HIS/HER INFORMATION AND/OR SPECIFIC USE ON THIS PROJECT. DUE TO THE POTENTIAL THAT THE PROVIDED INFORMATION MAY BE MODIFIED UNINTENTIONALLY OR OTHERWISE, ALLEN & MAJOR ASSOCIATES, INC. MAY REMOVE ALL INDICATION OF THE DOCUMENT'S AUTHORSHIP ON THE DIGITAL MEDIA. PRINTED REPRESENTATIONS OR PORTABLE DOCUMENT FORMAT OF THE DRAWINGS AND SPECIFICATIONS ISSUED SHALL BE THE ONLY RECORD COPIES OF ALLEN & MAJOR ASSOCIATES, INC.'S WORK PRODUCT.

DRAWING TITLE: **PROPOSED** WATERSHED PLAN Copyright©2021 Allen & Major Associates, Inc. All Rights Reserved